Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012333, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935804

RESUMO

The bloodstream form of Trypanosoma brucei expresses large poly-N-acetyllactosamine (pNAL) chains on complex N-glycans of a subset of glycoproteins. It has been hypothesised that pNAL may be required for receptor-mediated endocytosis. African trypanosomes contain a unique family of glycosyltransferases, the GT67 family. Two of these, TbGT10 and TbGT8, have been shown to be involved in pNAL biosynthesis in bloodstream form Trypanosoma brucei, raising the possibility that deleting both enzymes simultaneously might abolish pNAL biosynthesis and provide clues to pNAL function and/or essentiality. In this paper, we describe the creation of a TbGT10 null mutant containing a single TbGT8 allele that can be excised upon the addition of rapamycin and, from that, a TbGT10 and TbGT8 double null mutant. These mutants were analysed by lectin blotting, glycopeptide methylation linkage analysis and flow cytometry. The data show that the mutants are defective, but not abrogated, in pNAL synthesis, suggesting that other GT67 family members can compensate to some degree for loss of TbGT10 and TbGT8. Despite there being residual pNAL synthesis in these mutants, certain glycoproteins appear to be particularly affected. These include the lysosomal CBP1B serine carboxypeptidase, cell surface ESAG2 and the ESAG6 subunit of the essential parasite transferrin receptor (TfR). The pNAL deficient TfR in the mutants continued to function normally with respect to protein stability, transferrin binding, receptor mediated endocytosis of transferrin and subcellular localisation. Further the pNAL deficient mutants were as viable as wild type parasites in vitro and in in vivo mouse infection experiments. Although we were able to reproduce the inhibition of transferrin uptake with high concentrations of pNAL structural analogues (N-acetylchito-oligosaccharides), this effect disappeared at lower concentrations that still inhibited tomato lectin uptake, i.e., at concentrations able to outcompete lectin-pNAL binding. Based on these findings, we recommend revision of the pNAL-dependent receptor mediated endocytosis hypothesis.

2.
J Biol Chem ; : 107500, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944124

RESUMO

In eukaryotes, the D-enantiomer of arabinose (D-Ara) is an intermediate in the biosynthesis of D-erythroascorbate in yeast and fungi and in the biosynthesis of the nucleotide sugar GDP-α-D-arabinopyranose (GDP-D-Arap) and complex α-D-Arap containing surface glycoconjugates in certain trypanosomatid parasites. Whereas the biosynthesis of D-Ara in prokaryotes is well understood, the route from D-glucose (D-Glc) to D-Ara in eukaryotes is unknown. In this paper, we study the conversion of D-Glc to D-Ara in the trypanosomatid Crithidia fasciculata using positionally labelled [13C]-D-Glc and [13C]-D-ribose ([13C]-D-Rib) precursors and a novel derivatisation and gas chromatography-mass spectrometry procedure applied to a terminal metabolite, lipoarabinogalactan. These data implicate the both arms of pentose phosphate pathway and a likely role for D-ribulose-5-phosphate (D-Ru-5P) isomerisation to D-Ara-5P. We tested all C. fasciculata putative sugar and polyol phosphate isomerase genes for their ability to complement a D-Ara-5P isomerase-deficient mutant of Escherichia coli and found that one, the glutamine fructose-6-phosphate aminotransferase (GFAT) of glucosamine biosynthesis, was able to rescue the E. coli mutant. We also found that GFAT genes of other trypanosomatid parasites, and those of yeast and human origin, could complement the E. coli mutant. Finally, we demonstrated biochemically that recombinant human GFAT can isomerise D-Ru-5P to D-Ara5P. From these data, we postulate a general eukaryotic pathway from D-Glc to D-Ara and discuss its possible significance. With respect to C. fasciculata, we propose that D-Ara is used not only for the synthesis of GDP-D-Arap and complex surface glycoconjugates but also in the synthesis of D-erythroascorbate.

3.
J Biol Chem ; 299(8): 105016, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414151

RESUMO

The biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) in the parasitic protozoan Trypanosoma brucei involves fatty acid remodeling of the GPI precursor molecules before they are transferred to protein in the endoplasmic reticulum. The genes encoding the requisite phospholipase A2 and A1 activities for this remodeling have thus far been elusive. Here, we identify a gene, Tb927.7.6110, that encodes a protein that is both necessary and sufficient for GPI-phospholipase A2 (GPI-PLA2) activity in the procyclic form of the parasite. The predicted protein product belongs to the alkaline ceramidase, PAQR receptor, Per1, SID-1, and TMEM8 (CREST) superfamily of transmembrane hydrolase proteins and shows sequence similarity to Post-GPI-Attachment to Protein 6 (PGAP6), a GPI-PLA2 that acts after transfer of GPI precursors to protein in mammalian cells. We show the trypanosome Tb927.7.6110 GPI-PLA2 gene resides in a locus with two closely related genes Tb927.7.6150 and Tb927.7.6170, one of which (Tb927.7.6150) most likely encodes a catalytically inactive protein. The absence of GPI-PLA2 in the null mutant procyclic cells not only affected fatty acid remodeling but also reduced GPI anchor sidechain size on mature GPI-anchored procyclin glycoproteins. This reduction in GPI anchor sidechain size was reversed upon the re-addition of Tb927.7.6110 and of Tb927.7.6170, despite the latter not encoding GPI precursor GPI-PLA2 activity. Taken together, we conclude that Tb927.7.6110 encodes the GPI-PLA2 of GPI precursor fatty acid remodeling and that more work is required to assess the roles and essentiality of Tb927.7.6170 and the presumably enzymatically inactive Tb927.7.6150.


Assuntos
Glicosilfosfatidilinositóis , Trypanosoma brucei brucei , Animais , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipases A2/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Mamíferos/metabolismo
5.
Nature ; 560(7717): 192-197, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046105

RESUMO

Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Terapia de Alvo Molecular , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Quinase 9 Dependente de Ciclina/química , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Simulação de Acoplamento Molecular , Proteoma/efeitos dos fármacos , Proteômica , Pirazóis/química , Pirazóis/uso terapêutico , Pirimidinas/química , Pirimidinas/uso terapêutico , Reprodutibilidade dos Testes , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385330

RESUMO

Glycoconjugates play major roles in the infectious cycle of the trypanosomatid parasite Leishmania While GDP-Fucose synthesis is essential, fucosylated glycoconjugates have not been reported in Leishmania major [H. Guo et al., J. Biol. Chem. 292, 10696-10708 (2017)]. Four predicted fucosyltransferases appear conventionally targeted to the secretory pathway; SCA1/2 play a role in side-chain modifications of lipophosphoglycan, while gene deletion studies here showed that FUT2 and SCAL were not essential. Unlike most eukaryotic glycosyltransferases, the predicted α 1-2 fucosyltransferase encoded by FUT1 localized to the mitochondrion. A quantitative "plasmid segregation" assay, expressing FUT1 from the multicopy episomal pXNG vector in a chromosomal null ∆fut1- background, established that FUT1 is essential. Similarly, "plasmid shuffling" confirmed that both enzymatic activity and mitochondrial localization were required for viability, comparing import-blocked or catalytically inactive enzymes, respectively. Enzymatic assays of tagged proteins expressed in vivo or of purified recombinant FUT1 showed it had a broad fucosyltransferase activity including glycan and peptide substrates. Unexpectedly, a single rare ∆fut1- segregant (∆fut1s ) was obtained in rich media, which showed severe growth defects accompanied by mitochondrial dysfunction and loss, all of which were restored upon FUT1 reexpression. Thus, FUT1 along with the similar Trypanosoma brucei enzyme TbFUT1 [G. Bandini et al., bioRxiv, https://www.biorxiv.org/content/10.1101/726117v2 (2021)] joins the eukaryotic O-GlcNAc transferase isoform as one of the few glycosyltransferases acting within the mitochondrion. Trypanosomatid mitochondrial FUT1s may offer a facile system for probing mitochondrial glycosylation in a simple setting, and their essentiality for normal growth and mitochondrial function renders it an attractive target for chemotherapy of these serious human pathogens.


Assuntos
Fucosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Leishmania major/metabolismo , Mitocôndrias/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Meios de Cultura , Fucosiltransferases/genética , Mutação , Plasmídeos , Transporte Proteico , Proteínas de Protozoários/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
7.
Biochem J ; 479(17): 1743-1758, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36066312

RESUMO

Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases. Here, we describe how African trypanosomes exhibit both evolutionary conservation and significant divergence compared with other eukaryotes in how they synthesise their glycoproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylphosphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some components are missing, and they process and decorate their N-glycans and GPI anchors in unique ways. To do so, they appear to have evolved a distinct and functionally flexible glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic ß3GT gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite biology. Some appear to correlate with the obligate passage of parasites through an insect vector, suggesting they were acquired through GT67 gene expansion to assist insect vector (tsetse fly) colonisation. Others appear to have been lost in species that subsequently adopted contaminative transmission. We also highlight the recent discovery of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT genes, are discussed.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Glicosilação , Glicosilfosfatidilinositóis , Glicosiltransferases/genética , Trypanosoma brucei brucei/genética
8.
J Biol Chem ; 297(2): 100977, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34284059

RESUMO

Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.


Assuntos
Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Complexo de Golgi/metabolismo , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Polissacarídeos/metabolismo , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/metabolismo , Animais , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/química , Proteínas de Protozoários , Trypanosoma brucei brucei/isolamento & purificação , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase/parasitologia , Tripanossomíase/patologia
9.
J Biol Chem ; 297(4): 101153, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478712

RESUMO

The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite's glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a ß3 glycosyltransferase (ß3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galß1-4GlcNAcß1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:ßGal ß1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the ß1-6 specificity of a ß3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Glicosiltransferases/metabolismo , Família Multigênica , Polissacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Feminino , Glicosilação , Glicosilfosfatidilinositóis/genética , Glicosiltransferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Polissacarídeos/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
10.
Proc Natl Acad Sci U S A ; 116(19): 9318-9323, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30962368

RESUMO

Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and Leishmania infantum, is one of the major parasitic diseases worldwide. There is an urgent need for new drugs to treat VL, because current therapies are unfit for purpose in a resource-poor setting. Here, we describe the development of a preclinical drug candidate, GSK3494245/DDD01305143/compound 8, with potential to treat this neglected tropical disease. The compound series was discovered by repurposing hits from a screen against the related parasite Trypanosoma cruzi Subsequent optimization of the chemical series resulted in the development of a potent cidal compound with activity against a range of clinically relevant L. donovani and L. infantum isolates. Compound 8 demonstrates promising pharmacokinetic properties and impressive in vivo efficacy in our mouse model of infection comparable with those of the current oral antileishmanial miltefosine. Detailed mode of action studies confirm that this compound acts principally by inhibition of the chymotrypsin-like activity catalyzed by the ß5 subunit of the L. donovani proteasome. High-resolution cryo-EM structures of apo and compound 8-bound Leishmania tarentolae 20S proteasome reveal a previously undiscovered inhibitor site that lies between the ß4 and ß5 proteasome subunits. This induced pocket exploits ß4 residues that are divergent between humans and kinetoplastid parasites and is consistent with all of our experimental and mutagenesis data. As a result of these comprehensive studies and due to a favorable developability and safety profile, compound 8 is being advanced toward human clinical trials.


Assuntos
Antiprotozoários/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/diagnóstico por imagem , Inibidores de Proteassoma/administração & dosagem , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antiprotozoários/química , Sítios de Ligação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Leishmania donovani/química , Leishmania donovani/enzimologia , Leishmania infantum/química , Leishmania infantum/enzimologia , Leishmaniose Visceral/parasitologia , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
11.
Proc Natl Acad Sci U S A ; 115(35): 8763-8768, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30111543

RESUMO

Altered glycosylation patterns of plasma proteins are associated with autoimmune disorders and pathogenesis of various cancers. Elucidating glycoprotein microheterogeneity and relating subtle changes in the glycan structural repertoire to changes in protein-protein, or protein-small molecule interactions, remains a significant challenge in glycobiology. Here, we apply mass spectrometry-based approaches to elucidate the global and site-specific microheterogeneity of two plasma proteins: α1-acid glycoprotein (AGP) and haptoglobin (Hp). We then determine the dissociation constants of the anticoagulant warfarin to different AGP glycoforms and reveal how subtle N-glycan differences, namely, increased antennae branching and terminal fucosylation, reduce drug-binding affinity. Conversely, similar analysis of the haptoglobin-hemoglobin (Hp-Hb) complex reveals the contrary effects of fucosylation and N-glycan branching on Hp-Hb interactions. Taken together, our results not only elucidate how glycoprotein microheterogeneity regulates protein-drug/protein interactions but also inform the pharmacokinetics of plasma proteins, many of which are drug targets, and whose glycosylation status changes in various disease states.


Assuntos
Glucanos/química , Haptoglobinas/química , Modelos Químicos , Orosomucoide/química , Varfarina/química , Glucanos/metabolismo , Haptoglobinas/metabolismo , Humanos , Orosomucoide/metabolismo
12.
PLoS Pathog ; 14(12): e1007475, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30589893

RESUMO

Bloodstream form African trypanosomes are thought to rely exclusively upon glycolysis, using glucose as a substrate, for ATP production. Indeed, the pathway has long been considered a potential therapeutic target to tackle the devastating and neglected tropical diseases caused by these parasites. However, plasma membrane glucose and glycerol transporters are both expressed by trypanosomes and these parasites can infiltrate tissues that contain glycerol. Here, we show that bloodstream form trypanosomes can use glycerol for gluconeogenesis and for ATP production, particularly when deprived of glucose following hexose transporter depletion. We demonstrate that Trypanosoma brucei hexose transporters 1 and 2 (THT1 and THT2) are localized to the plasma membrane and that knockdown of THT1 expression leads to a growth defect that is more severe when THT2 is also knocked down. These data are consistent with THT1 and THT2 being the primary routes of glucose supply for the production of ATP by glycolysis. However, supplementation of the growth medium with glycerol substantially rescued the growth defect caused by THT1 and THT2 knockdown. Metabolomic analyses with heavy-isotope labelled glycerol demonstrated that trypanosomes take up glycerol and use it to synthesize intermediates of gluconeogenesis, including fructose 1,6-bisphosphate and hexose 6-phosphates, which feed the pentose phosphate pathway and variant surface glycoprotein biosynthesis. We used Cas9-mediated gene knockout to demonstrate a gluconeogenesis-specific, but fructose-1,6-bisphosphatase (Tb927.9.8720)-independent activity, converting fructose 1,6-bisphosphate into fructose 6-phosphate. In addition, we observed increased flux through the tricarboxylic acid cycle and the succinate shunt. Thus, contrary to prior thinking, gluconeogenesis can operate in bloodstream form T. brucei. This pathway, using glycerol as a physiological substrate, may be required in mammalian host tissues.


Assuntos
Gluconeogênese/fisiologia , Glicerol/metabolismo , Trypanosoma brucei brucei/metabolismo , Especificidade por Substrato
13.
Mol Cell Proteomics ; 17(6): 1184-1195, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29555687

RESUMO

We describe a single-step centrifugal elutriation method to produce synchronous Gap1 (G1)-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labeling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741 (https://www.ebi.ac.uk/pride/archive/).


Assuntos
Ciclo Celular/fisiologia , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteômica
14.
Artigo em Inglês | MEDLINE | ID: mdl-31405854

RESUMO

Chagas' disease, which is caused by the Trypanosoma cruzi parasite, has become a global health problem that is currently treated with poorly tolerated drugs that require prolonged dosing. Therefore, there is a clinical need for new therapeutic agents that can mitigate these issues. The phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GDP-MP) enzymes form part of the de novo biosynthetic pathway to the nucleotide sugar GDP-mannose. This nucleotide sugar is used either directly, or indirectly via the formation of dolichol-phosphomannose, for the assembly of all mannose-containing glycoconjugates. In T. cruzi, mannose-containing glycoconjugates include the cell-surface glycoinositol-phospholipids and the glycosylphosphatidylinositol-anchored mucin-like glycoproteins that dominate the cell surface architectures of all life cycle stages. This makes PMM and GDP-MP potentially attractive targets for a drug discovery program against Chagas' disease. To assess the ligandability of these enzymes in T. cruzi, we have screened 18,117 structurally diverse compounds exploring drug-like chemical space and 16,845 small polar fragment compounds using an assay interrogating the activities of both PMM and GDP-MP enzymes simultaneously. This resulted in 48 small fragment hits, and on retesting 20 were found to be active against the enzymes. Deconvolution revealed that these were all inhibitors of T. cruzi GDP-MP, with compounds 2 and 3 acting as uncompetitive and competitive inhibitors, respectively. Based on these findings, the T. cruzi PMM and GDP-MP enzymes were deemed not ligandable and poorly ligandable, respectively, using small molecules from conventional drug discovery chemical space. This presents a significant hurdle to exploiting these enzymes as therapeutic targets for Chagas' disease.


Assuntos
Antiprotozoários/farmacologia , Manose/metabolismo , Nucleotidiltransferases/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Trypanosoma cruzi/enzimologia , Doença de Chagas/parasitologia , Descoberta de Drogas/métodos , Manosefosfatos/metabolismo , Nucleotidiltransferases/genética , Fosfotransferases (Fosfomutases)/genética
15.
Mol Cell Proteomics ; 16(12): 2254-2267, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29042480

RESUMO

A disproportionate number of predicted proteins from the genome sequence of the protozoan parasite Trypanosoma brucei, an important human and animal pathogen, are hypothetical proteins of unknown function. This paper describes a protein correlation profiling mass spectrometry approach, using two size exclusion and one ion exchange chromatography systems, to derive sets of predicted protein complexes in this organism by hierarchical clustering and machine learning methods. These hypothesis-generating proteomic data are provided in an open access online data visualization environment (http://134.36.66.166:8083/complex_explorer). The data can be searched conveniently via a user friendly, custom graphical interface. We provide examples of both potential new subunits of known protein complexes and of novel trypanosome complexes of suggested function, contributing to improving the functional annotation of the trypanosome proteome. Data are available via ProteomeXchange with identifier PXD005968.


Assuntos
Biologia Computacional/métodos , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Humanos , Aprendizado de Máquina , Complexos Multiproteicos/metabolismo , Espectrometria de Massas em Tandem , Interface Usuário-Computador
16.
J Biol Chem ; 292(49): 20328-20341, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-28928222

RESUMO

Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic N-glycosylation pathways, raising questions as to the basic architecture and detailed function of trypanosome OSTs. Here, we show by blue-native gel electrophoresis and stable isotope labeling in cell culture proteomics that the TbSTT3A and TbSTT3B proteins associate with each other in large complexes that contain no other detectable protein subunits. We probed the peptide acceptor specificities of the OSTs in vivo using a transgenic glycoprotein reporter system and performed glycoproteomics on endogenous parasite glycoproteins using sequential endoglycosidase H and peptide:N-glycosidase-F digestions. This allowed us to assess the relative occupancies of numerous N-glycosylation sites by endoglycosidase H-resistant N-glycans originating from Man5GlcNAc2-PP-dolichol transferred by TbSTT3A, and endoglycosidase H-sensitive N-glycans originating from Man9GlcNAc2-PP-dolichol transferred by TbSTT3B. Using machine learning, we assessed the features that best define TbSTT3A and TbSTT3B substrates in vivo and built an algorithm to predict the types of N-glycan most likely to predominate at all the putative N-glycosylation sites in the parasite proteome. Finally, molecular modeling was used to suggest why TbSTT3A has a distinct preference for sequons containing and/or flanked by acidic amino acid residues. Together, these studies provide insights into how a highly divergent eukaryote has re-wired protein N-glycosylation to provide protein sequence-specific N-glycan modifications. Data are available via ProteomeXchange with identifiers PXD007236, PXD007267, and PXD007268.


Assuntos
Hexosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Trypanosoma brucei brucei/enzimologia , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Glicoproteínas/análise , Glicosilação , Complexos Multiproteicos , Polissacarídeos/análise , Proteômica/métodos , Especificidade por Substrato
17.
J Biol Chem ; 292(25): 10696-10708, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28465349

RESUMO

To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80- null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40- null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40-/afkp80- double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed "genetic metabolite complementation." First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40-/Δafkp80- double mutant was now readily obtained. As expected, the Δfkp40-/Δafkp80-/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s).


Assuntos
Teste de Complementação Genética/métodos , Guanosina Difosfato Fucose , Leishmania major , Proteínas de Protozoários , Guanosina Difosfato Fucose/genética , Guanosina Difosfato Fucose/metabolismo , Leishmania major/enzimologia , Leishmania major/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
18.
Mol Cell Proteomics ; 15(7): 2476-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27114452

RESUMO

We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754).


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas de Membrana/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Proteínas de Membrana/química , Mapas de Interação de Proteínas , Espectrometria de Massas em Tandem/métodos
19.
J Biol Chem ; 291(26): 13834-45, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27189951

RESUMO

The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1-3 and Manα1-6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the ß3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328-9339). Here, we demonstrate that TbGT15, another member of the same ß3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1-6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1-3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of ß3-glycosyltransferase family members to catalyze ß1-2 glycosidic linkages.


Assuntos
Genes de Protozoários/fisiologia , Glucosiltransferases , Proteínas de Protozoários , Trypanosoma brucei brucei , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
20.
Nucleic Acids Res ; 43(Database issue): D637-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300491

RESUMO

The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.


Assuntos
Bases de Dados de Compostos Químicos , Trypanosoma brucei brucei/metabolismo , Mineração de Dados , Internet , Redes e Vias Metabólicas , Proteômica , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA