Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 210(1): 63-76, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626355

RESUMO

Rationale: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic. Objectives: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. Methods: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived cells, cell cultures, and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. Measurements and Main Results: We identified biallelic pathogenic variants in WAP four-disulfide core domain 2 (WFDC2) in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and, thus, secretion of mature WFDC2. Conclusions: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis.


Assuntos
Bronquiectasia , Pólipos Nasais , Humanos , Bronquiectasia/genética , Bronquiectasia/fisiopatologia , Masculino , Feminino , Pólipos Nasais/genética , Adulto , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos , Adolescente , Criança , Pessoa de Meia-Idade , Adulto Jovem
2.
Eur Respir J ; 61(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822632

RESUMO

Nasal nitric oxide (nNO) is extremely low in most people with primary ciliary dyskinesia (PCD) and its measurement is an important contributor to making the diagnosis. Existing guidelines and technical standards focus on nNO measurements in older, cooperative children using chemiluminescence analysers. However, measurements of nNO in pre-school-age children (age 2-5 years) may facilitate early diagnosis and electrochemical rather than chemiluminescence analysers are widely used. Pre-schoolers often need different methods to be employed when measuring nNO. Hence, a European Respiratory Society Task Force has developed this technical standard as the first step towards standardising sampling, analysis and reporting of nNO measured as part of the diagnostic testing for PCD in all age groups, including pre-school-age children. Furthermore, we considered both chemiluminescence and electrochemical analysers that are in use worldwide. There was a paucity of quality evidence for electrochemical analysers and sampling methods used in young children, and the Task Force proposes future research priorities to allow updates of this technical standard.


Assuntos
Transtornos da Motilidade Ciliar , Síndrome de Kartagener , Humanos , Criança , Pré-Escolar , Idoso , Óxido Nítrico/análise , Síndrome de Kartagener/diagnóstico , Testes Respiratórios/métodos , Diagnóstico Precoce , Taxa Respiratória , Transtornos da Motilidade Ciliar/diagnóstico
3.
Am J Hum Genet ; 105(5): 1030-1039, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630787

RESUMO

Hydrocephalus is one of the most prevalent form of developmental central nervous system (CNS) malformations. Cerebrospinal fluid (CSF) flow depends on both heartbeat and body movement. Furthermore, it has been shown that CSF flow within and across brain ventricles depends on cilia motility of the ependymal cells lining the brain ventricles, which play a crucial role to maintain patency of the narrow sites of CSF passage during brain formation in mice. Using whole-exome and whole-genome sequencing, we identified an autosomal-dominant cause of a distinct motile ciliopathy related to defective ciliogenesis of the ependymal cilia in six individuals. Heterozygous de novo mutations in FOXJ1, which encodes a well-known member of the forkhead transcription factors important for ciliogenesis of motile cilia, cause a motile ciliopathy that is characterized by hydrocephalus internus, chronic destructive airway disease, and randomization of left/right body asymmetry. Mutant respiratory epithelial cells are unable to generate a fluid flow and exhibit a reduced number of cilia per cell, as documented by high-speed video microscopy (HVMA), transmission electron microscopy (TEM), and immunofluorescence analysis (IF). TEM and IF demonstrate mislocalized basal bodies. In line with this finding, the focal adhesion protein PTK2 displays aberrant localization in the cytoplasm of the mutant respiratory epithelial cells.


Assuntos
Ventrículos Cerebrais/patologia , Ciliopatias/genética , Fatores de Transcrição Forkhead/genética , Hidrocefalia/genética , Mutação/genética , Corpos Basais/patologia , Cílios/genética , Cílios/patologia , Ciliopatias/patologia , Epêndima/patologia , Células Epiteliais/patologia , Humanos , Hidrocefalia/patologia
4.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361034

RESUMO

Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized.


Assuntos
Transtornos da Motilidade Ciliar/genética , Interação Gene-Ambiente , Predisposição Genética para Doença , Animais , Cílios/metabolismo , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Humanos
5.
Am J Respir Crit Care Med ; 199(2): 190-198, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30067075

RESUMO

RATIONALE: In primary ciliary dyskinesia, factors leading to disease heterogeneity are poorly understood. OBJECTIVES: To describe early lung disease progression in primary ciliary dyskinesia and identify associations between ultrastructural defects and genotypes with clinical phenotype. METHODS: This was a prospective, longitudinal (5 yr), multicenter, observational study. Inclusion criteria were less than 19 years at enrollment and greater than or equal to two annual study visits. Linear mixed effects models including random slope and random intercept were used to evaluate longitudinal associations between the ciliary defect group (or genotype group) and clinical features (percent predicted FEV1 and weight and height z-scores). MEASUREMENTS AND MAIN RESULTS: A total of 137 participants completed 732 visits. The group with absent inner dynein arm, central apparatus defects, and microtubular disorganization (IDA/CA/MTD) (n = 41) were significantly younger at diagnosis and in mixed effects models had significantly lower percent predicted FEV1 and weight and height z-scores than the isolated outer dynein arm defect (n = 55) group. Participants with CCDC39 or CCDC40 mutations (n = 34) had lower percent predicted FEV1 and weight and height z-scores than those with DNAH5 mutations (n = 36). For the entire cohort, percent predicted FEV1 decline was heterogeneous with a mean (SE) decline of 0.57 (0.25) percent predicted/yr. Rate of decline was different from zero only in the IDA/MTD/CA group (mean [SE], -1.11 [0.48] percent predicted/yr; P = 0.02). CONCLUSIONS: Participants with IDA/MTD/CA defects, which included individuals with CCDC39 or CCDC40 mutations, had worse lung function and growth indices compared with those with outer dynein arm defects and DNAH5 mutations, respectively. The only group with a significant lung function decline over time were participants with IDA/MTD/CA defects.


Assuntos
Cílios/genética , Cílios/ultraestrutura , Síndrome de Kartagener/genética , Criança , Estudos de Coortes , Feminino , Genótipo , Humanos , Síndrome de Kartagener/fisiopatologia , Estudos Longitudinais , Pulmão/fisiopatologia , Masculino , Mutação/genética , Fenótipo , Estudos Prospectivos , Testes de Função Respiratória
6.
J Pediatr ; 207: 130-135.e2, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30612812

RESUMO

OBJECTIVE: To use a large current prospective cohort of infants <29 weeks to compare bronchopulmonary dysplasia (BPD) rates in black and white infants. STUDY DESIGN: The Prematurity and Respiratory Outcome Program (PROP) enrolled 835 infants born in 2011-2013 at <29 weeks of gestation; 728 black or white infants survived to 36 weeks postmenstrual age (PMA). Logistic regression was used to compare BPD outcomes (defined as supplemental oxygen requirement at 36 weeks PMA) between the races, adjusted for gestational age (GA), antenatal steroid use, intubation at birth, and surfactant use at birth. RESULTS: Of 707 black or white infants with available BPD outcomes, BPD was lower in black infants (38% vs 45%), even though they were of significantly lower GA. At every GA, BPD was more common in white infants. The aOR for BPD was 0.60 (95% CI, 0.42-0.85; P = .004) for black infants compared with white infants after adjusting for GA. Despite the lower rate of BPD, black infants had a higher rate of first-year post-prematurity respiratory disease (black, 79%; white, 63%). CONCLUSIONS: In this large cohort of recently born preterm infants at <29 weeks GA, compared with white infants, black infants had a lower risk of BPD but an increased risk of persistent respiratory morbidity.


Assuntos
Negro ou Afro-Americano , Displasia Broncopulmonar/etnologia , Hospitalização/tendências , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Medição de Risco/métodos , Seguimentos , Idade Gestacional , Humanos , Doenças do Prematuro/etnologia , Morbidade/tendências , Estudos Prospectivos , Fatores de Risco , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia , População Branca
7.
Am J Respir Crit Care Med ; 197(12): e24-e39, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29905515

RESUMO

BACKGROUND: This document presents the American Thoracic Society clinical practice guidelines for the diagnosis of primary ciliary dyskinesia (PCD). TARGET AUDIENCE: Clinicians investigating adult and pediatric patients for possible PCD. METHODS: Systematic reviews and, when appropriate, meta-analyses were conducted to summarize all available evidence pertinent to our clinical questions. Evidence was assessed using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach for diagnosis and discussed by a multidisciplinary panel with expertise in PCD. Predetermined conflict-of-interest management strategies were applied, and recommendations were formulated, written, and graded exclusively by the nonconflicted panelists. Three conflicted individuals were also prohibited from writing, editing, or providing feedback on the relevant sections of the manuscript. RESULTS: After considering diagnostic test accuracy, confidence in the estimates for each diagnostic test, relative importance of test results studied, desirable and undesirable direct consequences of each diagnostic test, downstream consequences of each diagnostic test result, patient values and preferences, costs, feasibility, acceptability, and implications for health equity, the panel made recommendations for or against the use of specific diagnostic tests as compared with using the current reference standard (transmission electron microscopy and/or genetic testing) for the diagnosis of PCD. CONCLUSIONS: The panel formulated and provided a rationale for the direction as well as for the strength of each recommendation to establish the diagnosis of PCD.


Assuntos
Cílios/patologia , Técnicas e Procedimentos Diagnósticos/normas , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Guias de Prática Clínica como Assunto , Estudos de Coortes , Estudos Transversais , Predisposição Genética para Doença , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Sensibilidade e Especificidade , Sociedades Médicas , Estados Unidos
8.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29848575

RESUMO

Children and adolescents are highly susceptible to nicotine addiction, which affects their brain development, even in those who smoke infrequently. Young people who become addicted to nicotine are at greater risk of becoming lifelong tobacco consumers. The use of nicotine-delivering electronic cigarettes has risen dramatically among youths worldwide. In addition to physical dependence, adolescents are susceptible to social and environmental influences to use electronic cigarettes. The product design, flavours, marketing, and perception of safety and acceptability have increased the appeal of electronic cigarettes to young people, thus leading to new generations addicted to nicotine. Moreover, there is growing evidence that electronic cigarettes in children and adolescents serve as a gateway to cigarette smoking. There can be no argument for harm reduction in children. To protect this vulnerable population from electronic cigarettes and other nicotine delivery devices, we recommend that electronic cigarettes be regulated as tobacco products and included in smoke-free policies. Sale of electronic cigarettes should be barred to youths worldwide. Flavouring should be prohibited in electronic cigarettes, and advertising accessible by youths and young adults be banned. Finally, we recommend greater research on the health effects of electronic cigarettes and surveillance of use across different countries.


Assuntos
Fumar Cigarros/epidemiologia , Sistemas Eletrônicos de Liberação de Nicotina/economia , Vaping/efeitos adversos , Vaping/legislação & jurisprudência , Adolescente , Publicidade/legislação & jurisprudência , Criança , Congressos como Assunto , Saúde Global , Redução do Dano , Humanos , Sociedades Médicas , Vaping/epidemiologia , Adulto Jovem
9.
Pediatr Res ; 84(3): 435-441, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967526

RESUMO

BACKGROUND: Biallelic deleterious variants in RTTN, which encodes rotatin, are associated with primary microcephaly, polymicrogyria, seizures, intellectual disability, and primordial dwarfism in human infants. METHODS AND RESULTS: We performed exome sequencing of an infant with primary microcephaly, pontocerebellar hypoplasia, and intractable seizures and his healthy, unrelated parents. We cultured the infant's fibroblasts to determine primary ciliary phenotype. RESULTS: We identified biallelic variants in RTTN in the affected infant: a novel missense variant and a rare, intronic variant that results in aberrant transcript splicing. Cultured fibroblasts from the infant demonstrated reduced length and number of primary cilia. CONCLUSION: Biallelic variants in RTTN cause primary microcephaly in infants. Functional characterization of primary cilia length and number can be used to determine pathogenicity of RTTN variants.


Assuntos
Encéfalo/anormalidades , Proteínas de Transporte/genética , Doenças Cerebelares/genética , Microcefalia/genética , Convulsões/genética , Alelos , Encéfalo/diagnóstico por imagem , Proteínas de Ciclo Celular , Cílios , Exoma , Evolução Fatal , Fibroblastos/metabolismo , Deleção de Genes , Variação Genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação de Sentido Incorreto , Fenótipo , Insuficiência Respiratória
10.
Thorax ; 72(12): 1104-1112, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28280235

RESUMO

RATIONALE: In infants and young children with cystic fibrosis, lower airway infection and inflammation are associated with adverse respiratory outcomes. However, the role of lower airway microbiota in the pathogenesis of early cystic fibrosis lung disease remains uncertain. OBJECTIVES: To assess the development of the lower airway microbiota over time in infants and young children with cystic fibrosis, and to explore its association with airway inflammation and pulmonary function at age 6 years. METHODS: Serial, semi-annual bronchoscopies and bronchoalveolar lavage (BAL) procedures were performed in infants newly diagnosed with cystic fibrosis following newborn screening. Quantitative microbiological cultures and inflammatory marker (interleukin 8 and neutrophil elastase) measurements were undertaken contemporaneously. 16S ribosomal RNA gene sequencing was conducted on stored BAL samples. Spirometry results recorded at 6 years of age were extracted from medical records. MEASUREMENTS AND MAIN RESULTS: Ninety-five BAL samples provided 16S ribosomal RNA gene data. These were collected from 48 subjects aged 1.2-78.3 months, including longitudinal samples from 27 subjects and 13 before age 6 months. The lower airway microbiota varied, but diversity decreased with advancing age. Detection of recognised cystic fibrosis bacterial pathogens was associated with reduced microbial diversity and greater lower airway inflammation. There was no association between the lower airway microbiota and pulmonary function at age 6 years. CONCLUSIONS: In infants with cystic fibrosis, the lower airway microbiota is dynamic. Dominance of the microbiota by recognised cystic fibrosis bacterial pathogens is associated with increased lower airway inflammation, however early microbial diversity is not associated with pulmonary function at 6 years of age.


Assuntos
Infecções Bacterianas/microbiologia , Fibrose Cística/microbiologia , Microbiota , Infecções Respiratórias/microbiologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/fisiopatologia , Técnicas de Tipagem Bacteriana/métodos , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/microbiologia , Broncoscopia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Lactente , Recém-Nascido , Mediadores da Inflamação/sangue , Estudos Longitudinais , Pulmão/microbiologia , Masculino , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/fisiopatologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/fisiopatologia , Capacidade Vital/fisiologia
11.
Eur Respir J ; 50(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29269581

RESUMO

Chronic respiratory disease can affect growth and nutrition, which can influence lung function. We investigated height, body mass index (BMI), and lung function in patients with primary ciliary dyskinesia (PCD).In this study, based on the international PCD (iPCD) Cohort, we calculated z-scores for height and BMI using World Health Organization (WHO) and national growth references, and assessed associations with age, sex, country, diagnostic certainty, age at diagnosis, organ laterality and lung function in multilevel regression models that accounted for repeated measurements.We analysed 6402 measurements from 1609 iPCD Cohort patients. Height was reduced compared to WHO (z-score -0.12, 95% CI -0.17 to -0.06) and national references (z-score -0.27, 95% CI -0.33 to -0.21) in male and female patients in all age groups, with variation between countries. Height and BMI were higher in patients diagnosed earlier in life (p=0.026 and p<0.001, respectively) and closely associated with forced expiratory volume in 1 s and forced vital capacity z-scores (p<0.001).Our study indicates that both growth and nutrition are affected adversely in PCD patients from early life and are both strongly associated with lung function. If supported by longitudinal studies, these findings suggest that early diagnosis with multidisciplinary management and nutritional advice could improve growth and delay disease progression and lung function impairment in PCD.


Assuntos
Estatura , Índice de Massa Corporal , Transtornos da Motilidade Ciliar/fisiopatologia , Estado Nutricional , Adolescente , Adulto , Distribuição por Idade , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valores de Referência , Testes de Função Respiratória , Estudos Retrospectivos , Adulto Jovem
12.
J Pediatr ; 187: 89-97.e3, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28528221

RESUMO

OBJECTIVE: To assess the utility of clinical predictors of persistent respiratory morbidity in extremely low gestational age newborns (ELGANs). STUDY DESIGN: We enrolled ELGANs (<29 weeks' gestation) at ≤7 postnatal days and collected antenatal and neonatal clinical data through 36 weeks' postmenstrual age. We surveyed caregivers at 3, 6, 9, and 12 months' corrected age to identify postdischarge respiratory morbidity, defined as hospitalization, home support (oxygen, tracheostomy, ventilation), medications, or symptoms (cough/wheeze). Infants were classified as having postprematurity respiratory disease (PRD, the primary study outcome) if respiratory morbidity persisted over ≥2 questionnaires. Infants were classified with severe respiratory morbidity if there were multiple hospitalizations, exposure to systemic steroids or pulmonary vasodilators, home oxygen after 3 months or mechanical ventilation, or symptoms despite inhaled corticosteroids. Mixed-effects models generated with data available at 1 day (perinatal) and 36 weeks' postmenstrual age were assessed for predictive accuracy. RESULTS: Of 724 infants (918 ± 234 g, 26.7 ± 1.4 weeks' gestational age) classified for the primary outcome, 68.6% had PRD; 245 of 704 (34.8%) were classified as severe. Male sex, intrauterine growth restriction, maternal smoking, race/ethnicity, intubation at birth, and public insurance were retained in perinatal and 36-week models for both PRD and respiratory morbidity severity. The perinatal model accurately predicted PRD (c-statistic 0.858). Neither the 36-week model nor the addition of bronchopulmonary dysplasia to the perinatal model improved accuracy (0.856, 0.860); c-statistic for BPD alone was 0.907. CONCLUSION: Both bronchopulmonary dysplasia and perinatal clinical data accurately identify ELGANs at risk for persistent and severe respiratory morbidity at 1 year. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01435187.


Assuntos
Displasia Broncopulmonar/diagnóstico , Pulmão/fisiopatologia , Estudos de Coortes , Feminino , Idade Gestacional , Inquéritos Epidemiológicos , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Morbidade , Gravidez , Prognóstico , Estudos Prospectivos
13.
Paediatr Respir Rev ; 24: 19-20, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28687245

RESUMO

Primary ciliary dyskinesia is an inherited disease characterized by impaired ciliary function leading to diverse clinical manifestations, including chronic sinopulmonary disease, persistent middle ear effusions, laterality defects, and infertility. Our understanding of the complex genetics and functional phenotypes of primary ciliary dyskinesia has rapidly grown, and over 35 disease-associated genes have been identified, which segregate into genes that encode axonemal motor proteins, regulatory proteins within the cilium, and cytoplasmic proteins involved in ciliary assembly. These findings have yielded unexpected insights into the clinical heterogeneity of disease and are beginning to revolutionize diagnostic testing for primary ciliary dyskinesia.


Assuntos
Cílios/ultraestrutura , Testes Genéticos , Síndrome de Kartagener/diagnóstico , Cílios/genética , Genótipo , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia , Microscopia Eletrônica de Transmissão , Mutação , Fenótipo
14.
Am J Respir Crit Care Med ; 193(8): e16-35, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082538

RESUMO

BACKGROUND: Children with chronic invasive ventilator dependence living at home are a diverse group of children with special health care needs. Medical oversight, equipment management, and community resources vary widely. There are no clinical practice guidelines available to health care professionals for the safe hospital discharge and home management of these complex children. PURPOSE: To develop evidence-based clinical practice guidelines for the hospital discharge and home/community management of children requiring chronic invasive ventilation. METHODS: The Pediatric Assembly of the American Thoracic Society assembled an interdisciplinary workgroup with expertise in the care of children requiring chronic invasive ventilation. The experts developed four questions of clinical importance and used an evidence-based strategy to identify relevant medical evidence. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to formulate and grade recommendations. RESULTS: Clinical practice recommendations for the management of children with chronic ventilator dependence at home are provided, and the evidence supporting each recommendation is discussed. CONCLUSIONS: Collaborative generalist and subspecialist comanagement is the Medical Home model most likely to be successful for the care of children requiring chronic invasive ventilation. Standardized hospital discharge criteria are suggested. An awake, trained caregiver should be present at all times, and at least two family caregivers should be trained specifically for the child's care. Standardized equipment for monitoring, emergency preparedness, and airway clearance are outlined. The recommendations presented are based on the current evidence and expert opinion and will require an update as new evidence and/or technologies become available.


Assuntos
Serviços de Assistência Domiciliar , Alta do Paciente , Respiração Artificial , Cuidadores , Criança , Doença Crônica , Humanos , Pediatria , Sociedades , Estados Unidos
15.
Am J Hum Genet ; 92(1): 99-106, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23261302

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only ~60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.


Assuntos
Síndrome de Kartagener/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Adulto , Pré-Escolar , Exoma , Feminino , Genes Recessivos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Isoformas de Proteínas , Análise de Sequência de DNA
16.
Am J Hum Genet ; 93(4): 711-20, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24055112

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.


Assuntos
Antígenos de Superfície/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Dineínas/genética , Proteínas de Ligação ao GTP/genética , Síndrome de Kartagener/genética , Mutação/genética , Adolescente , Adulto , Animais , Axonema/genética , Criança , Pré-Escolar , Citoplasma/genética , Células Epiteliais/metabolismo , Exoma , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem , Peixe-Zebra
17.
Am J Hum Genet ; 93(4): 672-86, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24094744

RESUMO

Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65.


Assuntos
Transtornos da Motilidade Ciliar/genética , Glicoproteínas/genética , Síndrome de Kartagener/genética , Peixe-Zebra/genética , Animais , Chlamydomonas/genética , Cílios/genética , Análise Mutacional de DNA/métodos , Dineínas/genética , Feminino , Humanos , Masculino , Mutação , Fases de Leitura Aberta , Planárias/genética , Proteoma/genética
18.
Am J Hum Genet ; 93(2): 336-45, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23891469

RESUMO

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


Assuntos
Cílios/genética , Síndrome de Kartagener/genética , Proteínas/genética , Sistema Respiratório/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Exoma , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Linhagem , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Ratos , Sistema Respiratório/patologia , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
20.
Paediatr Respir Rev ; 18: 18-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26476603

RESUMO

Ciliopathies are a growing class of disorders caused by abnormal ciliary axonemal structure and function. Our understanding of the complex genetic and functional phenotypes of these conditions has rapidly progressed. Primary ciliary dyskinesia (PCD) remains the sole genetic disorder of motile cilia dysfunction. However, unlike many Mendelian genetic disorders, PCD is not caused by mutations in a single gene or locus, but rather, autosomal recessive mutation in one of many genes that lead to a similar phenotype. The first reported PCD mutations, more than a decade ago, identified genes encoding known structural components of the ciliary axoneme. In recent years, mutations in genes encoding novel cytoplasmic and regulatory proteins have been discovered. These findings have provided new insights into the functions of the motile cilia, and a better understanding of motile cilia disease. Advances in genetic tools will soon allow more precise genetic testing, mandating that clinicians must understand the genetic basis of PCD. Here, we review genetic mutations, their biological impact on cilia structure and function, and the implication of emerging genetic diagnostic tools.


Assuntos
Marcadores Genéticos/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Síndrome de Kartagener/genética , Mutação , Animais , Humanos , Síndrome de Kartagener/diagnóstico , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA