Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Cell Sci ; 128(1): 27-32, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25380822

RESUMO

The process of host cell invasion by Trypanosoma cruzi shares mechanistic elements with plasma membrane injury and repair. Both processes require Ca(2+)-triggered exocytosis of lysosomes, exocytosis of acid sphingomyelinase and formation of ceramide-enriched endocytic compartments. T. cruzi invades at peripheral sites, suggesting a need for spatial regulation of membrane traffic. Here, we show that Exo70 and Sec8 (also known as EXOC7 and EXOC4, respectively), components of the exocyst complex, accumulate in nascent T. cruzi vacuoles and at sites of mechanical wounding. Exo70 or Sec8 depletion inhibits T. cruzi invasion and Ca(2+)-dependent resealing of mechanical wounds, but does not affect the repair of smaller lesions caused by pore-forming toxins. Thus, T. cruzi invasion and mechanical lesion repair share a unique requirement for the exocyst, consistent with a dependence on targeted membrane delivery.


Assuntos
Membrana Celular/metabolismo , Doença de Chagas/metabolismo , Endocitose , Trypanosoma cruzi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cálcio/metabolismo , Membrana Celular/patologia , Doença de Chagas/patologia , Células HeLa , Humanos
2.
Nucleic Acids Res ; 43(14): 6799-813, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26150419

RESUMO

Protozoan parasites of the genus Leishmania are the etiological agents of leishmaniasis, a group of diseases with a worldwide incidence of 0.9-1.6 million cases per year. We used RNA-seq to conduct a high-resolution transcriptomic analysis of the global changes in gene expression and RNA processing events that occur as L. major transforms from non-infective procyclic promastigotes to infective metacyclic promastigotes. Careful statistical analysis across multiple biological replicates and the removal of batch effects provided a high quality framework for comprehensively analyzing differential gene expression and transcriptome remodeling in this pathogen as it acquires its infectivity. We also identified precise 5' and 3' UTR boundaries for a majority of Leishmania genes and detected widespread alternative trans-splicing and polyadenylation. An investigation of possible correlations between stage-specific preferential trans-splicing or polyadenylation sites and differentially expressed genes revealed a lack of systematic association, establishing that differences in expression levels cannot be attributed to stage-regulated alternative RNA processing. Our findings build on and improve existing expression datasets and provide a substantially more detailed view of L. major biology that will inform the field and potentially provide a stronger basis for drug discovery and vaccine development efforts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Leishmania major/genética , Processamento Pós-Transcricional do RNA , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Protozoários , Leishmania major/crescimento & desenvolvimento , Leishmania major/metabolismo , Poliadenilação , Análise de Sequência de RNA , Trans-Splicing
3.
Traffic ; 13(3): 483-94, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22212686

RESUMO

Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes.


Assuntos
Toxinas Bacterianas/metabolismo , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Corpos Multivesiculares/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Western Blotting , Células Cultivadas , Endocitose , Modelos Biológicos , Estreptolisinas/metabolismo
4.
Cell Microbiol ; 15(6): 977-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23241026

RESUMO

The protozoan parasite Trypanosoma cruzi, the aetiological agent of Chagas' disease, has two infective life cycle stages, trypomastigotes and amastigotes. While trypomastigotes actively enter mammalian cells, highly infective extracellular amastigotes (type I T. cruzi) rely on actin-mediated uptake, which is generally inefficient in non-professional phagocytes. We found that extracellular amastigotes (EAs) of T. cruzi G strain (type I), but not Y strain (type II), were taken up 100-fold more efficiently than inert particles. Mammalian cell lines showed levels of parasite uptake comparable to macrophages, and extensive actin recruitment and polymerization was observed at the site of entry. EA uptake was not dependent on parasite-secreted molecules and required the same molecular machinery utilized by professional phagocytes during large particle phagocytosis. Transcriptional silencing of synaptotagmin VII and CD63 significantly inhibited EA internalization, demonstrating that delivery of supplemental lysosomal membrane to form the phagosome is involved in parasite uptake. Importantly, time-lapse live imaging using fluorescent reporters revealed phagosome-associated modulation of phosphoinositide metabolism during EA uptake that closely resembles what occurs during phagocytosis by macrophages. Collectively, our results demonstrate that T. cruzi EAs are potent inducers of phagocytosis in non-professional phagocytes, a process that may facilitate parasite persistence in infected hosts.


Assuntos
Doença de Chagas/fisiopatologia , Células HeLa/parasitologia , Estágios do Ciclo de Vida/fisiologia , Fagocitose/fisiologia , Trypanosoma cruzi/crescimento & desenvolvimento , Actinas/metabolismo , Animais , Doença de Chagas/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Fosfatidilinositóis/metabolismo , Sinaptotagminas/metabolismo , Tetraspanina 30/metabolismo , Trypanosoma cruzi/patogenicidade
5.
Mem Inst Oswaldo Cruz ; 106(8): 1014-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22241126

RESUMO

It has been recently shown that Trypanosoma cruzi trypomastigotes subvert a constitutive membrane repair mechanism to invade HeLa cells. Using a membrane extraction protocol and high-resolution microscopy, the HeLa cytoskeleton and T. cruzi parasites were imaged during the invasion process after 15 min and 45 min. Parasites were initially found under cells and were later observed in the cytoplasm. At later stages, parasite-driven protrusions with parallel filaments were observed, with trypomastigotes at their tips. We conclude that T. cruzi trypomastigotes induce deformations of the cortical actin cytoskeleton shortly after invasion, leading to the formation of pseudopod-like structures.


Assuntos
Membrana Celular/parasitologia , Citoesqueleto/parasitologia , Trypanosoma cruzi/fisiologia , Membrana Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Células HeLa/parasitologia , Células HeLa/ultraestrutura , Humanos , Fatores de Tempo
6.
Cell Microbiol ; 10(2): 415-25, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17910741

RESUMO

Enteropathogenic Escherichia coli (EPEC) forms attaching and effacing lesions in the intestinal mucosa characterized by intimate attachment to the epithelium by means of intimin (an outer membrane adhesin encoded by eae). EPEC is subgrouped into typical (tEPEC) and atypical (aEPEC); only tEPEC carries the EAF (EPEC adherence factor) plasmid that encodes the bundle-forming pilus (BFP). Characteristically, after 3 h of incubation, tEPEC produces localized adherence (LA) (with compact microcolonies) in HeLa/HEp-2 cells by means of BFP, whereas most aEPEC form looser microcolonies. We have previously identified nine aEPEC strains displaying LA in extended (6 h) assays (LA6). In this study, we analysed the kinetics of LA6 pattern development and the role of intimin in the process. Transmission electron microscopy and confocal laser microscopy showed that the invasive process of strain 1551-2 displays a LA phenotype. An eae-defective mutant of strain 1551-2 prevented the invasion although preserving intense diffused adherence. Sequencing of eae revealed that strain 1551-2 expresses the omicron subtype of intimin. We propose that the LA phenotype of aEPEC strain 1551-2 is mediated by intimin omicron and hypothesize that this strain expresses an additional novel adhesive structure. The present study is the first to report the association of compact microcolony formation and an intense invasive ability in aEPEC.


Assuntos
Adesinas Bacterianas/fisiologia , Aderência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/fisiologia , Actinas/metabolismo , Adesinas Bacterianas/química , Sequência de Aminoácidos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fenótipo , Fosforilação , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência
7.
Subcell Biochem ; 47: 101-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18512345

RESUMO

Trypanosoma cruzi is the protozoan parasite that causes Chagas' disease, a highly prevalent vector-borne disease in Latin America. Chagas' disease is a major public health problem in endemic regions with an estimated 18 million people are infected with T. cruzi and another 100 million at risk (http://www.who.int/ctd/chagas/disease.htm). During its life cycle, T. cruzi alternates between triatomine insect vectors and mammalian hosts. While feeding on host's blood, infected triatomines release in their feces highly motile and infective metacyclic trypomastigotes that may initiate infection. Metacyclic trypomastigotes promptly invade host cells (including gastric mucosa) and once free in the cytoplasm, differentiate into amastigotes that replicate by binary fission. Just before disruption of the parasite-laden cell, amastigotes differentiate back into trypomastigotes which are then released into the tissue spaces and access the circulation. Circulating trypomastigotes that disseminate the infection in the mammalian host may be taken up by feeding triatomines and may also transform, extracellularly, into amastigote-like forms. Unlike their intracellular counterparts, these amastigote-like forms, henceforth called amastigotes, are capable of infecting host cells. Studies in which the mechanisms of amastigote invasion of host cells have been compared to metacyclic trypomastigote entry have revealed interesting differences regarding the involvement of the target cell actin microfilament system.


Assuntos
Actinas/metabolismo , Estágios do Ciclo de Vida/fisiologia , Trypanosoma cruzi/fisiologia , Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Chlorocebus aethiops , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Trypanosoma cruzi/ultraestrutura , Células Vero
8.
Int J Parasitol ; 37(13): 1431-41, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17582418

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, is an obligatory intracellular parasite in the mammalian host. In order to invade a wide variety of mammalian cells, T. cruzi engages parasite components that are differentially expressed among strains and infective forms. Because the identification of putative protein receptors has been particularly challenging, we investigated whether cholesterol and membrane rafts, sterol- and sphingolipid-enriched membrane domains, could be general host surface components involved in invasion of metacyclic trypomastigotes and extracellular amastigotes of two parasite strains with distinct infectivities. HeLa or Vero cells treated with methyl-beta-cyclodextrin (MbetaCD) are less susceptible to invasion by both infective forms, and the effect was dose-dependent for trypomastigote but not amastigote invasion. Moreover, treatment of parasites with MbetaCD only inhibited trypomastigote invasion. Filipin labeling confirmed that host cell cholesterol concentrated at the invasion sites. Binding of a cholera toxin B subunit (CTX-B) to ganglioside GM1, a marker of membrane rafts, inhibited parasite infection. Cell labeling with CTX-B conjugated to fluorescein isothiocyanate revealed that not only cholesterol but also GM1 is implicated in parasite entry. These findings thus indicate that microdomains present in mammalian cell membranes, that are enriched in cholesterol and GM1, are involved in invasion by T. cruzi infective forms.


Assuntos
Colesterol/metabolismo , Trypanosoma cruzi/patogenicidade , Células Vero/parasitologia , Animais , Chlorocebus aethiops , Toxina da Cólera/metabolismo , Gangliosídeo G(M1)/análogos & derivados , Gangliosídeo G(M1)/metabolismo , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Trypanosoma cruzi/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
9.
mBio ; 7(3)2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27165796

RESUMO

UNLABELLED: Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. IMPORTANCE: Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly.


Assuntos
Interações Hospedeiro-Parasita , Leishmania/genética , Macrófagos/parasitologia , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leishmania/imunologia , Leishmania/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Fagocitose
10.
Elife ; 2: e00926, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24052812

RESUMO

Rapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown. Here we show that muscle fibers and other cell types repair membrane wounds by a mechanism involving Ca(2+)-triggered exocytosis of lysosomes, release of acid sphingomyelinase, and rapid lesion removal by caveolar endocytosis. Wounding or exposure to sphingomyelinase triggered endocytosis and intracellular accumulation of caveolar vesicles, which gradually merged into larger compartments. The pore-forming toxin SLO was directly visualized entering cells within caveolar vesicles, and depletion of caveolin inhibited plasma membrane resealing. Our findings directly link lesion removal by caveolar endocytosis to the maintenance of plasma membrane and muscle fiber integrity, providing a mechanistic explanation for the muscle pathology associated with mutations in caveolae proteins. DOI:http://dx.doi.org/10.7554/eLife.00926.001.


Assuntos
Cavéolas/fisiologia , Sobrevivência Celular , Cicatrização , Cálcio/metabolismo , Ceramidas/metabolismo , Exocitose , Permeabilidade , Esfingomielina Fosfodiesterase/metabolismo
11.
FEMS Microbiol Rev ; 36(3): 734-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22339763

RESUMO

The intracellular protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a serious disorder that affects millions of people in Latin America. Despite the development of lifelong immunity following infections, the immune system fails to completely clear the parasites, which persist for decades within host tissues. Cardiomyopathy is one of the most serious clinical manifestations of the disease, and a major cause of sudden death in endemic areas. Despite decades of study, there is still debate about the apparent preferential tropism of the parasites for cardiac muscle, and its role in the pathology of the disease. In this review, we discuss these issues in light of recent observations, which indicate that T. cruzi invades host cells by subverting a highly conserved cellular pathway for the repair of plasma membrane lesions. Plasma membrane injury and repair is particularly prevalent in muscle cells, suggesting that the mechanism used by the parasites for cell invasion may be a primary determinant of tissue tropism, intracellular persistence, and Chagas' disease pathology.


Assuntos
Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade , Membrana Celular/metabolismo , Doença de Chagas/patologia , Humanos , América Latina
12.
Cell Host Microbe ; 9(6): 463-71, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21669395

RESUMO

Leishmania parasites infect macrophages, cells normally involved in innate defense against pathogens. Leishmania amazonensis and Leishmania major cause severe or mild disease, respectively, consistent with each parasite's ability to survive within activated macrophages. The mechanisms underlying increased virulence of L. amazonensis are mostly unknown. We show that L. amazonensis promotes its own survival by inducing expression of CD200, an immunoregulatory molecule that inhibits macrophage activation. L. amazonensis does not form typical nonhealing lesions in CD200(-/-) mice and cannot replicate in CD200(-/-) macrophages, an effect reversed by exogenous administration of soluble CD200-Fc. The less virulent L. major does not induce CD200 expression and forms small, self-healing lesions in both wild-type and CD200(-/-) mice. Notably, CD200-Fc injection transforms the course of L. major infection to one resembling L. amazonensis, with large, nonhealing lesions. CD200-dependent iNOS inhibition allows parasite growth in macrophages, identifying a mechanism for the increased virulence of L. amazonensis.


Assuntos
Antígenos CD/genética , Interações Hospedeiro-Parasita , Leishmania/patogenicidade , Leishmaniose/genética , Animais , Antígenos CD/imunologia , Feminino , Expressão Gênica , Humanos , Leishmania/genética , Leishmania/fisiologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/imunologia , Virulência
13.
J Exp Med ; 208(5): 909-21, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21536739

RESUMO

Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca(2+) transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves Ca(2+)-dependent exocytosis of lysosomes, delivery of acid sphingomyelinase (ASM) to the outer leaflet of the plasma membrane, and a rapid form of endocytosis that internalizes membrane lesions. Host cells incubated with T. cruzi trypomastigotes are transiently wounded, show increased levels of endocytosis, and become more susceptible to infection when injured with pore-forming toxins. Inhibition or depletion of lysosomal ASM, which blocks plasma membrane repair, markedly reduces the susceptibility of host cells to T. cruzi invasion. Notably, extracellular addition of sphingomyelinase stimulates host cell endocytosis, enhances T. cruzi invasion, and restores normal invasion levels in ASM-depleted cells. Ceramide, the product of sphingomyelin hydrolysis, is detected in newly formed parasitophorous vacuoles containing trypomastigotes but not in the few parasite-containing vacuoles formed in ASM-depleted cells. Thus, T. cruzi subverts the ASM-dependent ceramide-enriched endosomes that function in plasma membrane repair to infect host cells.


Assuntos
Membrana Celular/enzimologia , Doença de Chagas/metabolismo , Endocitose , Esfingomielina Fosfodiesterase/metabolismo , Trypanosoma cruzi/metabolismo , Cálcio/metabolismo , Membrana Celular/genética , Ceramidas/genética , Ceramidas/metabolismo , Doença de Chagas/patologia , Exocitose/genética , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/genética , Esfingomielinas/metabolismo
14.
J Cell Biol ; 189(6): 1027-38, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20530211

RESUMO

Rapid plasma membrane resealing is essential for cellular survival. Earlier studies showed that plasma membrane repair requires Ca(2+)-dependent exocytosis of lysosomes and a rapid form of endocytosis that removes membrane lesions. However, the functional relationship between lysosomal exocytosis and the rapid endocytosis that follows membrane injury is unknown. In this study, we show that the lysosomal enzyme acid sphingomyelinase (ASM) is released extracellularly when cells are wounded in the presence of Ca(2+). ASM-deficient cells, including human cells from Niemann-Pick type A (NPA) patients, undergo lysosomal exocytosis after wounding but are defective in injury-dependent endocytosis and plasma membrane repair. Exogenously added recombinant human ASM restores endocytosis and resealing in ASM-depleted cells, suggesting that conversion of plasma membrane sphingomyelin to ceramide by this lysosomal enzyme promotes lesion internalization. These findings reveal a molecular mechanism for restoration of plasma membrane integrity through exocytosis of lysosomes and identify defective plasma membrane repair as a possible component of the severe pathology observed in NPA patients.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Linhagem Celular , Membrana Celular/ultraestrutura , Ceramidas/metabolismo , Desipramina/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Inibidores Enzimáticos/metabolismo , Inativação Gênica , Humanos , Lisossomos/enzimologia , Lisossomos/ultraestrutura , Doenças de Niemann-Pick/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
15.
Acta Trop ; 110(1): 65-74, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19283898

RESUMO

The phylogenetic proximity between Trypanosoma cruzi and Trypanosoma (Schizotrypanum) dionisii suggests that these parasites might explore similar strategies to complete their life cycles. T. cruzi is the etiological agent of the life-threatening Chagas' disease, whereas T. dionisii is a bat trypanosome and probably not capable of infecting humans. Here we sought to compare mammalian cell invasion and intracellular traffic of both trypanosomes and determine the differences and similarities in this process. The results presented demonstrate that T. dionisii is highly infective in vitro, particularly when the infection process occurs without serum and that the invasion is similarly affected by agents known to interfere with T. cruzi invasion process. Our results indicate that the formation of lysosomal-enriched compartments is part of a cell-invasion mechanism retained by related trypanosomatids, and that residence and further escape from a lysosomal compartment may be a common requisite for successful infection. During intracellular growth, parasites share a few epitopes with T. cruzi amastigotes and trypomastigotes. Unexpectedly, in heavily infected cells, amastigotes and trypomastigotes were found inside the host cell nucleus. These findings suggest that T. dionisii, although sharing some features in host cell invasion with T. cruzi, has unique behaviors that deserve to be further explored.


Assuntos
Núcleo Celular/parasitologia , Trypanosoma/crescimento & desenvolvimento , Animais , Linhagem Celular , Lisossomos/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Vacúolos/parasitologia
16.
Microb Pathog ; 43(1): 22-36, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17448629

RESUMO

Previous studies have shown that Coxiella burnetii, an intracellular bacterium that resides within acidified vacuoles with secondary lysosomal characteristics, is an effective modulator of the intracellular traffic of trypomastigote forms of Trypanosoma cruzi. In addition, vacuolar and cellular pH are related to fusion events that result in doubly infected phagosomes. T. cruzi, the etiological agent of Chagas' disease, occurs as different strains grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle, and T. cruzi II, linked to the human disease. In this work we compared extracellular amastigotes (EA), metacyclic trypomastigotes (MT) and tissue culture derived trypomastigotes (TCT) belonging to T. cruzi I or T. cruzi II for their ability to invade and escape from their parasitophorous vacuole (PV), in Vero cells or Vero cells harboring the bacterium, C. burnetti. Distinct invasion patterns were observed between different infective stages and between infective forms of different strains. Studies on the transference kinetics revealed that pH modulates the intracellular traffic of each infective stage, but this influence is not exclusive for each phylogenetic group. Endosomal to lysosomal sequential labeling with EEA-1 and LAMP-1 of the PV formed during the entry of each infective form revealed that the phagosome maturation processes are distinct but not strain-dependent. Due to their low hemolysin and trans-sialidase activities, MTs are retained for longer periods in LAMP-1 positive vacuoles. Our results thus suggest that despite the contrasting invasion capabilities, parasites of distinct phylogenetic group behave in similar fashion once inside the host cell.


Assuntos
Coxiella burnetii/fisiologia , Trypanosoma cruzi/fisiologia , Vacúolos/parasitologia , Animais , Chlorocebus aethiops , Endossomos/química , Endossomos/parasitologia , Concentração de Íons de Hidrogênio , Proteína 1 de Membrana Associada ao Lisossomo/análise , Lisossomos/química , Lisossomos/parasitologia , Proteínas de Membrana/análise , Microscopia de Fluorescência , Células Vero , Proteínas de Transporte Vesicular/análise
17.
Infect Immun ; 75(8): 3700-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17502387

RESUMO

Cell infection with Trypanosoma cruzi, the agent of Chagas' disease, begins with the uptake of infective trypomastigotes within phagosomes and their release into the cytosol, where they transform into replicating amastigotes; the latter, in turn, differentiate into cytolytically released and infective trypomastigotes. We ask here if the T. cruzi infection program can develop in enucleated host cells. Monolayers of L929 cells, enucleated by centrifugation in the presence of cytochalasin B and kept at 34 degrees C to extend the survival of cytoplasts, were infected with parasites of the CL strain. Percent infection, morphology, stage-specific markers, and numbers of parasites per cell were evaluated in nucleated and enucleated cells, both of which were present in the same preparations. Parasite uptake, differentiation and multiplication of amastigotes, development of epimastigote- and trypomastigote-like forms, and initial cytolytic release of parasites were all documented for cytoplasts and nucleated cells. Although the doubling times were similar, parasite loads at 48 and 72 h were significantly lower in the cytoplasts than in nucleated cells. Similar results were obtained with the highly virulent strain Y as well as with strains CL-14 and G, which exhibit low virulence for mice. Cytoplasts could also be infected with the CL strain 24 or 48 h after enucleation. Thus, infection of cells by T. cruzi can take place in enucleated host cells, i.e., in the absence of modulation of chromosomal and nucleolar gene transcription and of RNA modification and processing in the nucleus.


Assuntos
Núcleo Celular , Citoplasma/parasitologia , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Linhagem Celular , Feminino , Fibroblastos/parasitologia , Estágios do Ciclo de Vida , Camundongos , Microscopia de Fluorescência
18.
Mem. Inst. Oswaldo Cruz ; 106(8): 1014-1016, Dec. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-610979

RESUMO

It has been recently shown that Trypanosoma cruzi trypomastigotes subvert a constitutive membrane repair mechanism to invade HeLa cells. Using a membrane extraction protocol and high-resolution microscopy, the HeLa cytoskeleton and T. cruzi parasites were imaged during the invasion process after 15 min and 45 min. Parasites were initially found under cells and were later observed in the cytoplasm. At later stages, parasite-driven protrusions with parallel filaments were observed, with trypomastigotes at their tips. We conclude that T. cruzi trypomastigotes induce deformations of the cortical actin cytoskeleton shortly after invasion, leading to the formation of pseudopod-like structures.


Assuntos
Humanos , Membrana Celular/parasitologia , Citoesqueleto/parasitologia , Trypanosoma cruzi/fisiologia , Membrana Celular/ultraestrutura , Citoesqueleto/ultraestrutura , Células HeLa/parasitologia , Células HeLa/ultraestrutura , Fatores de Tempo
19.
An Acad Bras Cienc ; 77(1): 77-94, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15692679

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.


Assuntos
Citoplasma/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Células Cultivadas/parasitologia , Chlorocebus aethiops , Citoplasma/ultraestrutura , Células HeLa/parasitologia , Humanos , Microscopia Eletrônica de Transmissão , Filogenia , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Células Vero/parasitologia
20.
An. acad. bras. ciênc ; 77(1): 77-94, Mar. 2005. ilus, tab
Artigo em Inglês | LILACS | ID: lil-393096

RESUMO

O agente etiológico da doença de Chagas, Trypanosoma cruzi, ocorre como cepas ou isolados que podem ser agrupados em duas grandes linhagens filogenéticas: T. cruzi I associada ao ciclo silvestre e T. cruzi II ligada à doença humana. No hospedeiro mamífero o parasita tem que invadir células, e vários estudos relacionam as formas flageladas tripomastigotas neste processo. Diferentes componentes de superfície dos parasitas e alguns dos respectivos receptores foram identificados. Em nosso trabalho temos procurado compreender como amastigotas, que normalmente são encontrados crescendo no citoplasma, podem invadir células de mamíferos com infectividade comparável às dos tripomastigotas. Encontramos diferenças nas respostas celulares induzidas por amastigotas e tripomastigotas em relação a componentes de citoesqueleto e projeções de membrana ricas em actina. Amastigotas de cepas de T. cruzi I gerados extracelularmente, podem apresentar infectividade maior que tripomastigotas metacíclicos para linhagens celulares e células com expressão alterada em diferentes classes de componentes celulares. Células albergando a bactéria Coxiella burnetii tem nos permitido obter novos enfoques sobre as propriedades de tráfego intracelular das diferentes formas infectivas do T. cruzi, revelando requerimentos inesperados para o parasita transitar entre seu vacúolo parasitóforo até seu destino final no citoplasma da célula hospedeira.


Assuntos
Humanos , Animais , Citoplasma , Trypanosoma cruzi , Células Cultivadas , Chlorocebus aethiops , Células HeLa , Microscopia Eletrônica , Filogenia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA