Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 206(4): 1297-313, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25684249

RESUMO

Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification. We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes. The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate O-hydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5-hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox. The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop world-wide, provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.


Assuntos
Eucalyptus/genética , Genoma de Planta , Lignina/metabolismo , Simulação por Computador , Meio Ambiente , Eucalyptus/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hidroxilação , Metilação , Fenilalanina Amônia-Liase/genética , Filogenia , Propanóis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
2.
Plant Physiol ; 162(3): 1720-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735508

RESUMO

Trehalose 6-P (T6P) is a sugar signal in plants that inhibits SNF1-related protein kinase, SnRK1, thereby altering gene expression and promoting growth processes. This provides a model for the regulation of growth by sugar. However, it is not known how this model operates under sink-limited conditions when tissue sugar content is uncoupled from growth. To test the physiological importance of this model, T6P, SnRK1 activities, sugars, gene expression, and growth were measured in Arabidopsis (Arabidopsis thaliana) seedlings after transfer to cold or zero nitrogen compared with sugar feeding under optimal conditions. Maximum in vitro activities of SnRK1 changed little, but T6P accumulated up to 55-fold, correlating with tissue Suc content in all treatments. SnRK1-induced and -repressed marker gene expression strongly related to T6P above and below a threshold of 0.3 to 0.5 nmol T6P g(-1) fresh weight close to the dissociation constant (4 µm) of the T6P/ SnRK1 complex. This occurred irrespective of the growth response to Suc. This implies that T6P is not a growth signal per se, but through SnRK1, T6P primes gene expression for growth in response to Suc accumulation under sink-limited conditions. To test this hypothesis, plants with genetically decreased T6P content and SnRK1 overexpression were transferred from cold to warm to analyze the role of T6P/SnRK1 in relief of growth restriction. Compared with the wild type, these plants were impaired in immediate growth recovery. It is concluded that the T6P/SnRK1 signaling pathway responds to Suc induced by sink restriction that enables growth recovery following relief of limitations such as low temperature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , Carboidratos , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Nitrogênio , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Plântula , Sacarose/metabolismo , Sacarose/farmacologia , Trealose/metabolismo
3.
Front Plant Sci ; 15: 1439380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188543

RESUMO

Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.

4.
BMC Biotechnol ; 13: 111, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359290

RESUMO

BACKGROUND: Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. RESULTS: When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. CONCLUSIONS: Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1ß, Top1ß and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells.


Assuntos
Antioxidantes/metabolismo , Reparo do DNA , Medicago sativa/citologia , Células Vegetais/efeitos dos fármacos , Pontos Quânticos , Catalase/metabolismo , Células Cultivadas , DNA Topoisomerases Tipo I/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Glutationa Redutase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
5.
Physiol Plant ; 146(2): 236-49, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22497501

RESUMO

Medicago truncatula is a model legume, whose genome is currently being sequenced. Somatic embryogenesis (SE) is a genotype-dependent character and not yet fully understood. In this study, a proteomic approach was used to compare the induction and expression phases of SE of both the highly embryogenic line M9-10a of M. truncatula cv. Jemalong and its non-embryogenic predecessor line, M9. The statistical analysis between the lines revealed 136 proteins with significant differential expression (P < 0.05). Of these, 5 had a presence/absence pattern in M9 vs M9-10a and 22 showed an at least twofold difference in terms of spot volume, were considered of particular relevance to the SE process and therefore chosen for identification. Spots were excised in gel digested with trypsin and proteins were identified using matrix-assisted laser desorption ionization-time of flight/time of flight. Identified proteins indicated a higher adaptability of the embryogenic line toward the stress imposed by the inducing culture conditions. Also, some proteins were shown to have a dual pattern of expression: peroxidase, pyrophosphatase and aspartate aminotransferase. These proteins showed higher expression during the induction phases of the M9 line, whereas in the embryogenic line had higher expression at stages coinciding with embryo formation.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Medicago truncatula/embriologia , Reguladores de Crescimento de Plantas/análise , Proteínas de Plantas/análise , Sementes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Variação Genética , Genótipo , Medicago truncatula/química , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteômica , Sementes/crescimento & desenvolvimento , Especificidade da Espécie
6.
BMC Plant Biol ; 11: 79, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21569262

RESUMO

BACKGROUND: Small RNAs (sRNAs) are 20-24 nucleotide (nt) RNAs and are involved in plant development and response to abiotic stresses. Plants have several sRNA pathways implicated in the transcriptional and post-transcriptional silencing of gene expression. Two key enzyme families common to all pathways are the Dicer-like (DCL) proteins involved in sRNAs maturation and the Argonautes (AGOs) involved in the targeting and functional action of sRNAs. Post-transcriptional silencing mediated by AGOs may occur by cleavage or translational repression of target mRNA's, while transcriptional silencing may be controlled by DNA methylation and chromatin remodeling. Thus far, these gene families have not been characterized in legumes, nor has their involvement in adaptation to water deficit been studied. RESULTS: A bioinformatic search in Medicago truncatula genome databases, using Arabidopsis thaliana AGO and DCL cDNA and protein sequences, identified three sequences encoding for putative Dicer-like genes and twelve sequences encoding for putative Argonaute genes. Under water deficit conditions and mainly in roots, MtDCL1 and MtAGO1, two enzymes probably involved in the processing and activation of microRNAs (miRNAs), increased their transcript levels. mir162 which target DCL1 mRNA and mir168 which target AGO1 mRNA reduced their expression in the roots of plants subjected to water deficit. Three putative genes, MtDCL3, MtAGO4b and MtAGO4c probably involved in DNA methylation mechanisms, increased their mRNA levels. However, the mRNA levels of MtAGO6 reduced, which probably encodes a protein with functions similar to MtAGO4. MtAGO7 mRNA levels increased and possibly encodes a protein involved in the production of trans-acting small interfering RNAs. The transcript abundance of MtAGO12a, MtAGO12b and MtAGO12c reduced under water deprivation. Plants recovered from water deprivation reacquire the mRNA levels of the controls. CONCLUSIONS: Our work demonstrates that in M. truncatula the transcript accumulation of the components of small RNA pathways is being modulated under water deficit. This shows that the transcriptional and post-transcriptional control of gene expression mediated by sRNAs is probably involved in plant adaptation to abiotic environmental changes. In the future this will allow the manipulation of these pathways providing a more efficient response of legumes towards water shortage.


Assuntos
Desidratação/genética , Desidratação/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Adaptação Biológica/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Humanos , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/biossíntese , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transcrição Gênica
7.
Front Plant Sci ; 12: 688214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249057

RESUMO

Olea europaea 'Galega vulgar' variety is a blend of West and Central Mediterranean germplasm with cultivated-wild admixture characteristics. 'Galega vulgar' is known for its high rusticity and superior-quality olive oil, being the main Portuguese variety with high impact for bioeconomy. Nevertheless, it has been replaced by higher-yielding and more adapted to intensive production foreign varieties. To clarify the potential ancestral origin, genetic diversity evolution, and existing genetic relationships within the national heritage of 'Galega vulgar', 595 trees, belonging to ancient and centenary age groups and prospected among ten traditional production regions, were characterized using 14 SSR markers after variety validation by endocarp measurements. Ninety-five distinguishable genets were identified, revealing the presence of a reasonable amount of intra-genetic and morphological variability. A minimum spanning tree, depicting the complete genealogy of all identified genets, represented the 'Galega vulgar' intra-varietal diversity, with 94% of the trees showing only a two-allele difference from the most frequent genet (C001). Strong correlations between the number of differentiating alleles from C001, the clonal size, and their net divergence suggested an ancestral monoclonal origin of the 'Galega vulgar', with the most frequent genet identified as the most likely origin of all the genets and phenotypic diversification occurring through somatic mutations. Genetic erosion was detected through the loss of some allele combinations across time. This work highlights the need to recover the lost diversity in this traditional olive variety by including ancient private genets (associated with potential adaptation traits) in future breeding programs and investing in the protection of these valuable resources in situ by safeguarding the defined region of origin and dispersion of 'Galega vulgar'. Furthermore, this approach proved useful on a highly diverse olive variety and thus applicable to other diverse varieties due either to their intermediate nature between different gene pools or to the presence of a mixture of cultivated and wild traits (as is the case of 'Galega vulgar').

8.
Metabolites ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070718

RESUMO

In viticulture, grafting is used to propagate Phylloxera-susceptible European grapevines, thereby using resistant American rootstocks. Although scion-rootstock reciprocal signaling is essential for the formation of a proper vascular union and for coordinated growth, our knowledge of graft partner interactions is very limited. In order to elucidate the scale and the content of scion-rootstock metabolic interactions, we profiled the metabolome of eleven graft combination in leaves, stems, and phloem exudate from both above and below the graft union 5-6 months after grafting. We compared the metabolome of scions vs. rootstocks of homografts vs. heterografts and investigated the reciprocal effect of the rootstock on the scion metabolome. This approach revealed that (1) grafting has a minor impact on the metabolome of grafted grapevines when tissues and genotypes were compared, (2) heterografting affects rootstocks more than scions, (3) the presence of a heterologous grafting partner increases defense-related compounds in both scion and rootstocks in shorter and longer distances from the graft, and (4) leaves were revealed as the best tissue to search for grafting-related metabolic markers. These results will provide a valuable metabolomics resource for scion-rootstock interaction studies and will facilitate future efforts on the identification of metabolic markers for important agronomic traits in grafted grapevines.

9.
Hortic Res ; 8(1): 18, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33436559

RESUMO

The knowledge on post-transcriptional regulation mechanisms implicated in seed development (SD) is still limited, particularly in one of the most consumed grain legumes, Phaseolus vulgaris L. We explore for the first time the miRNA expression dynamics in P. vulgaris developing seeds. Seventy-two known and 39 new miRNAs were found expressed in P. vulgaris developing seeds. Most of the miRNAs identified were more abundant at 10 and 40 days after anthesis, suggesting that late embryogenesis/early filling and desiccation were SD stages in which miRNA action is more pronounced. Degradome analysis and target prediction identified targets for 77 expressed miRNAs. While several known miRNAs were predicted to target HD-ZIP, ARF, SPL, and NF-Y transcription factors families, most of the predicted targets for new miRNAs encode for functional proteins. MiRNAs-targets expression profiles evidenced that these miRNAs could tune distinct seed developmental stages. MiRNAs more accumulated at early SD stages were implicated in regulating the end of embryogenesis, postponing the seed maturation program, storage compound synthesis and allocation. MiRNAs more accumulated at late SD stages could be implicated in seed quiescence, desiccation tolerance, and longevity with still uncovered roles in germination. The miRNAs herein described represent novel P. vulgaris resources with potential application in future biotechnological approaches to modulate the expression of genes implicated in legume seed traits with impact in horticultural production systems.

10.
J Nanobiotechnology ; 8: 24, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20929583

RESUMO

BACKGROUND: Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility. RESULTS: A plant cell suspension culture of Medicago sativa was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by Medicago sativa cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, Medicago sativa cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H2DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation. CONCLUSIONS: Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for Medicago sativa cells, a safe range of 1-5 nM should not be exceeded for biological applications.

11.
Front Plant Sci ; 11: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194583

RESUMO

The domesticated grapevine spread along the Mediterranean basin from the primary Near East domestication area, where the greatest genetic diversity is found in its ancestor, the wild vine populations. Portuguese wild populations are on the southwestern fringe of the distribution of the Vitis vinifera L. ssp. sylvestris (C.C. Gmel.) Hegi in Europe. During the last Glacial Period they became isolated from the previous continuum that had been the territory of wild vine populations. Archaeological remains of domesticated vinifera grapevines in Portugal date back from 795 Before Common Era (BCE) in the lower Tagus river basin. In this work, 258 Portuguese vinifera varieties and sylvestris plants were characterized using 261 single nucleotide polymorphism (SNP) markers. The study of the genetic diversity of this local germplasm, its population structure and kinship, all framed in their historical and geographical backgrounds, revealed a complex network of first-degree relationships, where only Iberian varieties are involved. Some Iberian genotypes, like Alfrocheiro (Bruñal, in Spain), Sarigo (Cayetana Blanca), Mourisco Branco (Hebén), Amaral (Caiño Bravo), and Marufo (Moravia Dulce) are ancestors of a considerable fraction of all the autochthonous analyzed varieties. A part of the diversity developed was mostly local in some cases as shown by the closeness of several varieties (Vinhos Verdes) to the wild cluster in different analyses. Besides, several evidences of introgression of domesticated germplasm into wild vines was found, substantiating the high risk of genetic contamination of the sylvestris subspecies. All these findings together to the known matching between the wild maternal lineage of the Iberian Peninsula and an important number of Portuguese grapevine varieties (chlorotype A), point out that some of these varieties derive, directly or indirectly, from originally local wild populations, supporting the possible occurrence of secondary events of local domestication, or, at least, of an introgression process of wild into cultivated grapevines.

12.
Front Plant Sci ; 10: 1590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921241

RESUMO

Trehalose, a non-reducing disaccharide with multiple functions, among which source of energy and carbon, stress protectant, and signaling molecule, has been mainly studied in relation to plant development and response to stress. The trehalose pathway is conserved among different organisms and is composed of three enzymes: trehalose-6-phosphate synthase (TPS), which converts uridine diphosphate (UDP)-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P), trehalose-6-phosphatase (TPP), which dephosphorylates T6P to produce trehalose, and trehalase (TRE), responsible for trehalose catabolism. In plants, the trehalose pathway has been mostly studied in resurrection plants and the model plant Arabidopsis thaliana, where 11 AtTPS, 10 AtTPP, and 1 AtTRE genes are present. Here, we aim to investigate the involvement of the trehalose pathway in the early stages of seed germination (specifically, seed imbibition) using the model legume Medicago truncatula as a working system. Since not all the genes belonging to the trehalose pathway had been identified in M. truncatula, we first conducted an in silico analysis using the orthologous gene sequences from A. thaliana. Nine MtTPSs, eight MtTPPs, and a single MtTRE gene were hereby identified. Subsequently, the expression profiles of all the genes (together with the sucrose master-regulator SnRK1) were investigated during seed imbibition with water or stress agents (polyethylene glycol and sodium chloride). The reported data show a temporal distribution and preferential expression of specific TPS and TPP isoforms during seed imbibition with water. Moreover, it was possible to distinguish a small set of genes (e.g., MtTPS1, MtTPS7, MtTPS10, MtTPPA, MtTPPI, MtTRE) having a potential impact as precocious hallmarks of the seed response to stress. When the trehalose levels were measured by high-performance liquid chromatography, a significant decrease was observed during seed imbibition, suggesting that trehalose may act as an energy source rather than osmoprotectant. This is the first report investigating the expression profiles of genes belonging to the trehalose pathway during seed imbibition, thus ascertaining their involvement in the pre-germinative metabolism and their potential as tools to improve seed germination efficiency.

13.
J Plant Physiol ; 241: 153034, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493718

RESUMO

Legumes have the capacity to fix nitrogen in symbiosis with soil bacteria known as rhizobia by the formation of root nodules. However, nitrogen fixation is highly sensitive to soil salinity with a concomitant reduction of the plant yield and soil fertilization. Polycationic aliphatic amines known as polyamines (PAs) have been shown to be involved in the response to a variety of stresses in plants including soil salinity. Therefore, the generation of transgenic plants overexpressing genes involved in PA biosynthesis have been proposed as a promising tool to improve salt stress tolerance in plants. In this work we tested whether the modulation of PAs in transgenic Medicago truncatula plants was advantageous for the symbiotic interaction with Sinorhizobium meliloti under salt stress conditions, when compared to wild type plants. Consequently, we characterized the symbiotic response to salt stress of the homozygous M. truncatula plant line L-108, constitutively expressing the oat adc gene, coding for the PA biosynthetic enzyme arginine decarboxylase, involved in PAs biosynthesis. In a nodulation kinetic assay, nodule number incremented in L-108 plants under salt stress. In addition, these plants at vegetative stage showed higher nitrogenase and nodule biomass and, under salt stress, accumulated proline (Pro) and spermine (Spm) in nodules, while in wt plants, the accumulation of glutamic acid (Glu), γ-amino butyric acid (GABA) and 1-aminocyclopropane carboxylic acid (ACC) (the ethylene (ET) precursor) were the metabolites involved in the salt stress response. Therefore, overexpression of oat adc gene favours the symbiotic interaction between plants of M. truncatula L-108 and S. meliloti under salt stress and the accumulation of Pro and Spm, seems to be the molecules involved in salt stress tolerance.


Assuntos
Carboxiliases/metabolismo , Genes de Plantas/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Estresse Salino/fisiologia , Sinorhizobium meliloti/fisiologia , Espermina/metabolismo , Simbiose , Aminoácidos/metabolismo , Carboxiliases/genética , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Interações entre Hospedeiro e Microrganismos/genética , Peróxido de Hidrogênio/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia , Simbiose/fisiologia , Transcriptoma
14.
New Phytol ; 178(2): 283-301, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18298434

RESUMO

Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW-BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetics.


Assuntos
Ecossistema , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pinus/química , Pinus/genética , Madeira/metabolismo , Envelhecimento , Fenótipo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteoma , Xilema/citologia , Xilema/metabolismo
15.
Genes (Basel) ; 9(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241355

RESUMO

The maintenance of genome integrity is crucial in seeds, due to the constant challenge of several endogenous and exogenous factors. The knowledge concerning DNA damage response and chromatin remodeling during seed development is still scarce, especially in Phaseolus vulgaris L. A transcriptomic profiling of the expression of genes related to DNA damage response/chromatin remodeling mechanisms was performed in P. vulgaris seeds at four distinct developmental stages, spanning from late embryogenesis to seed desiccation. Of the 14,001 expressed genes identified using massive analysis of cDNA ends, 301 belong to the DNA MapMan category. In late embryogenesis, a high expression of genes related to DNA damage sensing and repair suggests there is a tight control of DNA integrity. At the end of filling and the onset of seed dehydration, the upregulation of genes implicated in sensing of DNA double-strand breaks suggests that genome integrity is challenged. The expression of chromatin remodelers seems to imply a concomitant action of chromatin remodeling with DNA repair machinery, maintaining genome stability. The expression of genes related to nucleotide excision repair and chromatin structure is evidenced during the desiccation stage. An overview of the genes involved in DNA damage response and chromatin remodeling during P. vulgaris seed development is presented, providing insights into the mechanisms used by developing seeds to cope with DNA damage.

16.
J Biotechnol ; 130(2): 193-201, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17462774

RESUMO

Bacteriocins from lactic acid bacteria are ribosomally synthesized anti-microbial compounds that may find applications from food preservation to healthcare. Food preservation, using in situ bacteriocin production is the most obvious and simple. Frequently, the best conditions for bacteriocin production are those prevailing during food fermentation but a better understanding of the relationship between growth and bacteriocin production is required. In this work, we evaluate the effects of some environmental factors on bacteriocin production by Lactobacillus plantarum 17.2b. A first screening design showed that NaCl, temperature, pH and the type and concentration of carbon and nitrogen sources were most influents. A moderate stimulatory effect of ethanol and oleuropein was also registered. Two consecutive central composite designs were used to examine the effect of the selected variables and to compute its optimum. The evolution of changes produced by the alterations in environmental factors was further examined trough perturbation plots. Bacteriocin production by L. plantarum 17.2b was very sensitive to environmental conditions and uncoupled from growth. Maximum production required suboptimal growth temperatures, pH values above growth's optimum and no NaCl. A preliminary approach to kinetics showed that bacteriocin production by this strain apparently follows mixed metabolite kinetics.


Assuntos
Bacteriocinas/biossíntese , Biotecnologia/métodos , Lactobacillus plantarum/metabolismo , Cloreto de Sódio/metabolismo , Carbono/metabolismo , Fermentação , Aditivos Alimentares , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/metabolismo , Temperatura
17.
Front Plant Sci ; 8: 515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443110

RESUMO

The most dangerous pathogen affecting the production of chestnuts is Phytophthora cinnamomi a hemibiotrophic that causes root rot, also known as ink disease. Little information has been acquired in chestnut on the molecular defense strategies against this pathogen. The expression of eight candidate genes potentially involved in the defense to P. cinnamomi was quantified by digital PCR in Castanea genotypes showing different susceptibility to the pathogen. Seven of the eight candidate genes displayed differentially expressed levels depending on genotype and time-point after inoculation. Cast_Gnk2-like revealed to be the most expressed gene across all experiments and the one that best discriminates between susceptible and resistant genotypes. Our data suggest that the pre-formed defenses are crucial for the resistance of C. crenata to P. cinnamomi. A lower and delayed expression of the eight studied genes was found in the susceptible Castanea sativa, which may be related with the establishment and spread of the disease in this species. A working model integrating the obtained results is presented.

18.
J Chromatogr A ; 1477: 30-38, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27908495

RESUMO

Trehalose-6-phosphate (T6P) is an important signaling metabolite involved in plant growth control that inhibits the sucrose nonfermenting-1-related protein kinase 1 (SnRK1), a key regulator of energy and carbon metabolism in plants. The quantification of T6P in plant tissues is fundamental to improve our understanding of sugar signaling and the links between plant growth and development in response to stress conditions. However, the almost undetectable levels of T6P together with the complex plant matrix and the presence of T6P isomers such as sucrose-6-phosphate (S6P), makes the detection of this metabolite challenging. This work describes the development and validation of a hydrophilic interaction chromatography (HILIC) method for the on-line coupling with negative ion electrospray (ESI) triple quadrupole tandem mass spectrometry (MS/MS) in the highly sensitive and selective multiple reaction monitoring (MRM) mode for the target analysis of metabolic intermediates of the biosynthesis of trehalose, including glucose-6-phosphate (G6P), uridine 5-diphospho-glucose (UDPG), T6P (and its isomer S6P). Enhanced signal in the MRM mode and improved chromatographic separation for each compound were obtained using piperidine and methylphosphonic acid as additives in the HILIC mobile phase. The optimized HILIC-ESI-QqQ-MS/MS method increases the range of sensitive analytical methodologies for the quantification of key low-abundant metabolites, and was applied to quantify the fluctuations of S6P, T6P and G6P in Medicago truncatula plants in response to environmental stress. The levels of S6P, T6P, and G6P in M. truncatula plant tissues (roots and leaves) exposed to a water deficit and recovery treatment, ranged from 30 to 150pmolg-1 FW, 16-120pmolg-1 FW, and 330-1690pmolg-1 FW, respectively.


Assuntos
Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Medicago truncatula/metabolismo , Metaboloma , Fosfatos Açúcares/análise , Espectrometria de Massas em Tandem/métodos , Trealose/análogos & derivados , Vias Biossintéticas , Limite de Detecção , Folhas de Planta/metabolismo , Padrões de Referência , Soluções , Sacarose/análogos & derivados , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análise
19.
J Biotechnol ; 120(1): 121-34, 2005 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-16026877

RESUMO

Plants are emerging as a promising alternative to conventional platforms for the large-scale production of recombinant proteins. This field of research, known as molecular farming, is developing rapidly and several plant-derived recombinant proteins are already in advanced clinical trials. However, the full potential of molecular farming can only be realized if we gain a fundamental understanding of biological processes regulating the production and accumulation of functional recombinant proteins in plants. Recent studies indicate that species- and tissue-specific factors as well as plant physiology can have a significant impact on the amount and quality of the recombinant product. More detailed comparative studies are needed for each product, including the analysis of expression levels, biochemical properties, in vitro activity and subcellular localization. In this review we include the first results from an extensive comparative study in which the highly glycosylated enzyme phytase (from the fungus Aspergillus niger) was produced in different plant species (including tobacco and the model legume Medicago truncatula). Special emphasis is placed on M. truncatula, whose leaves accumulated the highest levels of active phytase. We discuss the potential of this species as a novel production host.


Assuntos
Reatores Biológicos , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Técnicas de Cultura de Células/métodos , Plantas Geneticamente Modificadas/metabolismo , Avaliação da Tecnologia Biomédica , Transfecção/métodos
20.
Phytochemistry ; 66(2): 147-51, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15652571

RESUMO

An adenosine nucleosidase (ANase) (EC 3.2.2.7) was purified from young leaves of Coffea arabica L. cv. Catimor. A sequence of fractionating steps was used starting with ammonium sulphate salting-out, followed by anion exchange, hydrophobic interaction and gel filtration chromatography. The enzyme was purified 5804-fold and a specific activity of 8333 nkat mg-1 protein was measured. The native enzyme is a homodimer with an apparent molecular weight of 72 kDa estimated by gel filtration and each monomer has a molecular weight of 34.6 kDa, estimated by SDS-PAGE. The enzyme showed maximum activity at pH 6.0 in citrate-phosphate buffer (50 mM). The calculated Km is 6.3 microM and Vmax 9.8 nKat.


Assuntos
Coffea/enzimologia , N-Glicosil Hidrolases/isolamento & purificação , Folhas de Planta/enzimologia , Concentração de Íons de Hidrogênio , N-Glicosil Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA