Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0157023, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727224

RESUMO

Xeruborbactam is a newly developed ß-lactamase inhibitor designed for metallo-ß-lactamases (MBLs). This study assessed the relative inhibitory properties of this novel inhibitor in comparison with another MBL inhibitor, namely taniborbactam (TAN), against a wide range of acquired MBL produced either in Escherichia coli or Pseudomonas aeruginosa. As observed with taniborbactam, the combination of xeruborbactam (XER) with ß-lactams, namely, ceftazidime, cefepime and meropenem, led to significantly decreased MIC values for a wide range of B1-type MBL-producing E. coli, including most recombinant strains producing NDM, VIM, IMP, GIM-1, and DIM-1 enzymes. Noteworthily, while TAN-based combinations significantly reduced MIC values of ß-lactams for MBL-producing P. aeruginosa recombinant strains, those with XER were much less effective. We showed that this latter feature was related to the MexAB-OprM efflux pump significantly impacting MIC values when testing XER-based combinations in P. aeruginosa. The relative inhibitory concentrations (IC50 values) were similar for XER and TAN against NDM and VIM enzymes. Noteworthily, XER was effective against NDM-9, NDM-30, VIM-83, and most of IMP enzymes, although those latter enzymes were considered resistant to TAN. However, no significant inhibition was observed with XER against IMP-10, SPM-1, and SIM-1 as well as the representative subclass B2 and B3 enzymes, PFM-1 and AIM-1. The determination of the constant inhibition (Ki) of XER revealed a much higher value against IMP-10 than against NDM-1, VIM-2, and IMP-1. Hence, IMP-10 that differs from IMP-1 by a single amino-acid substitution (Val67Phe) can, therefore, be considered resistant to XER.

2.
Eur J Clin Microbiol Infect Dis ; 43(3): 551-557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233610

RESUMO

OBJECTIVES: The occurrence of metallo-beta-lactamase-producing Pseudomonas aeruginosa (MBL-PA) isolates is increasing globally, including in Switzerland. The aim of this study was to characterise, phenotypically and genotypically, the MBL-PA isolates submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) reference laboratory over a 12-month period from July 2022 to July 2023. METHODS: Thirty-nine non-duplicate MBL-PA Isolates were submitted to NARA over the study period from across Switzerland. Susceptibility was determined by broth microdilution according to EUCAST methodology. Whole-genome sequencing was performed on 34 isolates. Sequence types (STs) and resistance genes were ascertained using the Centre for Genomic Epidemiology platform. MBL genes, blaNDM-1, blaIMP-1, and blaVIM-2, were cloned into vector pUCP24 and transformed into P. aeruginosa PA14. RESULTS: The most prevalent MBL types identified in this study were VIM (21/39; 53.8%) followed by NDM (11/39; 28.2%), IMP (6/39; 15.4%), and a single isolate produced both VIM and NDM enzymes. WGS identified 13 different STs types among the 39 isolates. They all exhibited resistance to cephalosporins, carbapenems, and the beta-lactam-beta-lactamase inhibitor combinations, ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam, and 8 isolates were cefiderocol (FDC) resistant. Recombinant P. aeruginosa strains producing blaNDM-1, blaIMP-1, and blaVIM-2 exhibited FDC MICs of 16, 8, and 1 mg/L, respectively. CONCLUSIONS: This study showed that the MBL-PA in Switzerland could be attributed to the wide dissemination of high-risk clones that accounted for most isolates in this study. Although FDC resistance was only found in 8 isolates, MBL carriage was shown to be a major contributor to this phenotype.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Suíça/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia
3.
Antimicrob Agents Chemother ; 67(3): e0142422, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853006

RESUMO

Increasing occurrence of multidrug-resistant (MDR) and hypervirulent (hv) Klebsiella pneumoniae (MDR-hvKp) convergent clones is being observed. Those strains have the potential of causing difficult-to-treat infections in healthy adults with an increased capacity for mortality. It is therefore crucial to track their dissemination to prevent their further spread. The aim of our study was to investigate the occurrence of carbapenemase-producing hvKp isolates in Switzerland and to determine their genetic profile. A total of 279 MDR carbapenemase-producing K. pneumoniae from patients hospitalized all over Switzerland was investigated, and a rate of 9.0% K. pneumoniae presenting a virulence genotype was identified. Those isolates produced either KPC, NDM, or OXA-48 and had been either recovered from rectal swabs, urine, and blood. A series of previously reported K. pneumoniae clones such as ST23-K1, ST395-K2, and ST147-K20 or ST147-K64 were identified. All the isolates defined as MDR-hvKp (4.7%) possessed the aerobactin and the yersiniabactin clusters. The ST23-K1s were the only isolates presenting the colibactin cluster and achieved higher virulence scores. This study highlights the occurrence and circulation of worrisome MDR-hvKp and MDR nonhypervirulent K. pneumoniae (MDR-nhv-Kp) isolates in Switzerland. Our findings raise an alert regarding the need for active surveillance networks to track and monitor the spread of such successful hybrid clones representing a public health threat worldwide.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Adulto , Humanos , Suíça/epidemiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Eur J Clin Microbiol Infect Dis ; 42(5): 639-644, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877262

RESUMO

Carbapenem-resistant Enterobacterales, including KPC-producing Klebsiella pneumoniae, represent a major threat to public health due to their rapid spread. The beta-lactam/beta-lactamase inhibitor (BL/BLI) combination ceftazidime-avibactam (CAZ-AVI) has recently been introduced and shown to exhibit excellent activity toward multidrug-resistant KPC-producing Enterobacterales strains. However, CAZ-AVI-resistant K. pneumoniae isolates are being increasingly reported, mostly corresponding to producers of KPC variants that confer resistance to CAZ-AVI but at a cost of carbapenem resistance. We have characterized here, both phenotypically and genotypically, a clinical CAZ-AVI- and carbapenem-resistant KPC-2 K. pneumoniae isolate co-producing the inhibitor-resistant extended-spectrum beta-lactamase VEB-25.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae , beta-Lactamases/genética , Ceftazidima/farmacologia , Combinação de Medicamentos , Carbapenêmicos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Proteínas de Bactérias/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37470894

RESUMO

Following the observation of an increased number of isolation of OXA-23- and ArmA-producing Acinetobacter baumannii at the national level, our aim was to evaluate whether some given clone(s) might actually be spreading and/or emerging in Switzerland. To evaluate this possibility, our study investigated and characterized all A. baumannii isolates harboring both the blaOXA-23 and armA genes that had been collected at the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) from 2020 to 2021. Most isolates were obtained from infections rather than colonization with the majority being obtained from respiratory specimens. Pulsed-field gel electrophoresis (PFGE) analysis of 56 isolates identified nine profiles. Then, whole-genome sequencing that was performed on a subset of 11 isolates including at least one representative isolate of each PFGE profile identified three STs; one each of ST25 and ST1902, and nine ST2 (a member of Global Clone 2 (GC-2). The blaOXA-23 gene was always found embedded within Tn2006 structures, as commonly described with GC-2 (ST2) isolates. Susceptibility testing showed that most of those isolates, despite being highly resistant to all carbapenems and all aminoglycosides, remained susceptible to colistin (94.6%), sulbactam-durlobactam (87.5%), and cefiderocol (83.9% or 91.1% according to EUCAST or CLSI breakpoints, respectively). Overall, this study identified that the A. baumannii co-producing OXA-23 and ArmA are increasing in incidence in Switzerland, largely due to the dissemination of the high-risk GC-2. This highlights the importance of the monitoring of such MDR A. baumannii strains, in order to contribute to reduce their potential further spread.

6.
Antimicrob Agents Chemother ; 66(10): e0091822, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36154170

RESUMO

Carbapenem-resistant Enterobacterales, such as KPC-producing Klebsiella pneumoniae, represent a major threat to public health. Novel drug combinations including imipenem-relebactam (IPM-REL) have recently been introduced and have been shown to exhibit excellent activity toward such strains. However, there has recently been reports of the in vivo emergence of IPM-REL resistance in KPC-producing K. pneumoniae. Here, we evaluated, in vitro, the nature of the mutations that lead to IPM-REL resistance in 5 KPC-producing K. pneumoniae strains, including 2 that produce KPC enzymes conferring ceftazidime-avibactam resistance. An in vitro multi-step selection assay was performed and corresponding mutants obtained. Mutations were identified in OmpK36 as well as 2 different mutant derivatives of KPC. Mutant strains exhibited decreased susceptibility to ß-lactams, including the carbapenems, and meropenem-vaborbactam (MEM-VAB). Expression of blaKPC gene variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to carbapenems and decreased susceptibility to CAZ-AVI, and enzymatic assays showed that the inhibitory activity of both AVI and REL was significantly lowered for both KPC mutants compared to parental enzymes. Complementation assays showed that OmpK36 plays a major role in IPM-REL resistance as well resistance to other ß-lactams and ß-lactam/ß-lactamase inhibitor combinations. Overall, this study showed that (i) IPM-REL resistant strains can be obtained from CAZ-AVI-susceptible or -resistant KPC producers, (ii) selection of IPM-REL resistance has a collateral effect on MEM-VAB susceptibility - indicative of shared resistance mechanisms, (iii) and mutations in the KPC sequence may be obtained using IPM-REL selection leading to the possibility of vertical and horizontal transfer of this resistance trait.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Meropeném/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Cefalosporinas/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli , Combinação de Medicamentos , Imipenem/farmacologia , Proteínas de Bactérias/metabolismo
7.
Eur J Clin Microbiol Infect Dis ; 41(11): 1355-1360, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36103096

RESUMO

OXA-48-type ß-lactamases are the most prevalent carbapenemase-type in Enterobacterales in Switzerland, predominantly found in Escherichia coli and Klebsiella pneumoniae. Bacteria-producing OXA-48-type enzymes are endemic in some parts of the world, including Europe and North Africa, and are a frequent cause of nosocomial infections. Despite the emergence of numerous OXA-48-type variants, the original variant, OXA-48, remains the most prevalent in E. coli. This study describes the epidemiology of OXA-48-producing E. coli isolates submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) between January 2019 and December 2020.


Assuntos
Infecção Hospitalar , Infecções por Escherichia coli , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Infecção Hospitalar/tratamento farmacológico , Escherichia coli , Infecções por Escherichia coli/microbiologia , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Suíça/epidemiologia , beta-Lactamases/genética
8.
Emerg Infect Dis ; 27(10): 2628-2637, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545787

RESUMO

Carbapenemase-producing Enterobacterales (CPE) bacteria are a critical global health concern; New Delhi metallo-ß-lactamase (NDM) enzymes account for >25% of all CPE found in Switzerland. We characterized NDM-positive CPE submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance during a 2-year period (January 2019-December 2020) phenotypically and by using whole-genome sequencing. Most isolates were either Klebsiella pneumoniae (59/141) or Escherichia coli (52/141), and >50% were obtained from screening swabs. Among the 108 sequenced isolates, NDM-1 was the most prevalent variant, occurring in 56 isolates, mostly K. pneumoniae (34/56); the next most prevalent was NDM-5, which occurred in 49 isolates, mostly E. coli (40/49). Fourteen isolates coproduced a second carbapenemase, predominantly an OXA-48-like enzyme, and almost one third of isolates produced a 16S rRNA methylase conferring panresistance to aminoglycosides. We identified successful plasmids and global lineages as major factors contributing to the increasing prevalence of NDMs in Switzerland.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Escherichia coli/enzimologia , Escherichia coli/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S , Suíça/epidemiologia , beta-Lactamases
9.
Antimicrob Agents Chemother ; 65(9): e0089021, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228551

RESUMO

Carbapenem-resistant Enterobacterales, such as Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, represent a major threat to public health due to their rapid spread. Novel drug combinations such as ceftazidime-avibactam (CZA), combining a broad-spectrum cephalosporin along with a broad-spectrum ß-lactamase inhibitor, have recently been introduced and have been shown to exhibit excellent activity toward multidrug-resistant KPC-producing Enterobacterales strains. However, CZA-resistant K. pneumoniae isolates are now being increasingly reported, mostly corresponding to producers of KPC variants. In this study, we evaluated in vitro the nature of the mutations in the KPC-2 and KPC-3 ß-lactamase sequences (the most frequent KPC-type enzymes) that lead to CZA resistance and the subsequent effects of these mutations on susceptibility to other ß-lactam antibiotics. Single-step in vitro selection assays were conducted, resulting in the identification of a series of mutations in the KPC sequence which conferred the ability of those mutated enzymes to confer resistance to CZA. Hence, 16 KPC-2 variants and 10 KPC-3 variants were obtained. Production of the KPC variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to broad-spectrum cephalosporins and carbapenems, with the exceptions of ceftazidime and piperacillin-tazobactam, compared to wild-type KPC enzymes. Enzymatic assays showed that all of the KPC variants identified exhibited an increased affinity toward ceftazidime and a slightly decreased sensitivity to avibactam, sustaining their impact on CZA resistance. However, their respective carbapenemase activities were concurrently negatively impacted.


Assuntos
Ceftazidima , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Ceftazidima/farmacologia , Combinação de Medicamentos , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
10.
J Antimicrob Chemother ; 76(3): 587-595, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33338207

RESUMO

OBJECTIVES: To measure the variability in carbapenem susceptibility conferred by different OxaAb variants, characterize the molecular evolution of oxaAb and elucidate the contribution of OxaAb and other possible carbapenem resistance factors in the clinical isolates using WGS and LC-MS/MS. METHODS: Antimicrobial susceptibility tests were performed on 10 clinical Acinetobacter baumannii isolates. Carbapenem MICs were evaluated for all oxaAb variants cloned into A. baumannii CIP70.10 and BM4547, with and without their natural promoters. Molecular evolution analysis of the oxaAb variants was performed using FastTree and SplitsTree4. Resistance determinants were studied in the clinical isolates using WGS and LC-MS/MS. RESULTS: Only the OxaAb variants with I129L and L167V substitutions, OxaAb(82), OxaAb(83), OxaAb(107) and OxaAb(110) increased carbapenem MICs when expressed in susceptible A. baumannii backgrounds without an upstream IS element. Carbapenem resistance was conferred with the addition of their natural upstream ISAba1 promoter. LC-MS/MS analysis on the original clinical isolates confirmed overexpression of the four I129L and L167V variants. No other differences in expression levels of proteins commonly associated with carbapenem resistance were detected. CONCLUSIONS: Elevated carbapenem MICs were observed by expression of OxaAb variants carrying clinically prevalent substitutions I129L and L167V. To drive carbapenem resistance, these variants required overexpression by their upstream ISAba1 promoter. This study clearly demonstrates that a combination of IS-driven overexpression of oxaAb and the presence of particular amino acid substitutions in the active site to improve carbapenem capture is key in conferring carbapenem resistance in A. baumannii and other mechanisms are not required.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , beta-Lactamases , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cromatografia Líquida , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem , beta-Lactamases/genética
11.
J Antimicrob Chemother ; 76(12): 3144-3150, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450630

RESUMO

BACKGROUND: Our primary aim was to test whether cattle-associated fluoroquinolone-resistant (FQ-R) Escherichia coli found on dairy farms are closely phylogenetically related to those causing bacteriuria in humans living in the same 50 × 50 km geographical region suggestive of farm-human sharing. Another aim was to identify risk factors for the presence of FQ-R E. coli on dairy farms. METHODS: FQ-R E. coli were isolated during 2017-18 from 42 dairy farms and from community urine samples. Forty-two cattle and 489 human urinary isolates were subjected to WGS, allowing phylogenetic comparisons. Risk factors were identified using a Bayesian regularization approach. RESULTS: Of 489 FQ-R human isolates, 255 were also third-generation-cephalosporin-resistant, with strong genetic linkage between aac(6')Ib-cr and blaCTX-M-15. We identified possible farm-human sharing for pairs of ST744 and ST162 isolates, but minimal core genome SNP distances were larger between farm-human pairs of ST744 and ST162 isolates (71 and 63 SNPs, respectively) than between pairs of isolates from different farms (7 and 3 SNPs, respectively). Total farm fluoroquinolone use showed a positive association with the odds of isolating FQ-R E. coli, while total dry cow therapy use showed a negative association. CONCLUSIONS: This work suggests that FQ-R E. coli found on dairy farms have a limited impact on community bacteriuria within the local human population. Reducing fluoroquinolone use may reduce the on-farm prevalence of FQ-R E. coli and this reduction may be greater when dry cow therapy is targeted to the ecology of resistant E. coli on the farm.


Assuntos
Bacteriúria , Infecções por Escherichia coli , Animais , Antibacterianos/farmacologia , Teorema de Bayes , Bovinos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fazendas , Feminino , Fluoroquinolonas/farmacologia , Humanos , Filogenia
12.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397699

RESUMO

Little is known about the drivers of critically important antibacterial resistance in species with zoonotic potential present on farms (e.g., CTX-M ß-lactamase-positive Escherichia coli). We collected samples monthly between January 2017 and December 2018 on 53 dairy farms in South West England, along with data for 610 variables concerning antibacterial usage, management practices, and meteorological factors. We detected E. coli resistant to amoxicillin, ciprofloxacin, streptomycin, and tetracycline in 2,754/4,145 (66%), 263/4,145 (6%), 1,475/4,145 (36%), and 2,874/4,145 (69%), respectively, of samples from fecally contaminated on-farm and near-farm sites. E. coli positive for blaCTX-M were detected in 224/4,145 (5.4%) of samples. Multilevel, multivariable logistic regression showed antibacterial dry cow therapeutic choice (including use of cefquinome or framycetin) to be associated with higher odds of blaCTX-M positivity. Low average monthly ambient temperature was associated with lower odds of blaCTX-ME. coli positivity in samples and with lower odds of finding E. coli resistant to each of the four test antibacterials. This was in addition to the effect of temperature on total E. coli density. Furthermore, samples collected close to calves had higher odds of having E. coli resistant to each antibacterial, as well as E. coli positive for blaCTX-M Samples collected on pastureland had lower odds of having E. coli resistant to amoxicillin or tetracycline, as well as lower odds of being positive for blaCTX-MIMPORTANCE Antibacterial resistance poses a significant threat to human and animal health and global food security. Surveillance for resistance on farms is important for many reasons, including tracking impacts of interventions aimed at reducing the prevalence of resistance. In this longitudinal survey of dairy farm antibacterial resistance, we showed that local temperature-as it changes over the course of a year-was associated with the prevalence of antibacterial-resistant E. coli We also showed that prevalence of resistant E. coli was lower on pastureland and higher in environments inhabited by young animals. These findings have profound implications for routine surveillance and for surveys carried out for research. They provide important evidence that sampling at a single time point and/or single location on a farm is unlikely to be adequate to accurately determine the status of the farm regarding the presence of samples containing resistant E. coli.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/genética , beta-Lactamases/genética , Envelhecimento , Amoxicilina/farmacologia , Animais , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/microbiologia , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Fazendas , Fezes/microbiologia , Estreptomicina/farmacologia , Temperatura , Tetraciclina/farmacologia
13.
Clin Infect Dis ; 71(10): 2553-2560, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746994

RESUMO

BACKGROUND: Early and accurate treatment of infections due to carbapenem-resistant organisms is facilitated by rapid diagnostics, but rare resistance mechanisms can compromise detection. One year after a Guiana Extended-Spectrum (GES)-5 carbapenemase-positive Klebsiella oxytoca infection was identified by whole-genome sequencing (WGS; later found to be part of a cluster of 3 cases), a cluster of 11 patients with GES-5-positive K. oxytoca was identified over 18 weeks in the same hospital. METHODS: Bacteria were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry, antimicrobial susceptibility testing followed European Committee on Antimicrobial Susceptibility Testing guidelines. Ertapenem-resistant isolates were referred to Public Health England for characterization using polymerase chain reaction (PCR) detection of GES, pulsed-field gel electrophoresis (PFGE), and WGS for the second cluster. RESULTS: The identification of the first GES-5 K. oxytoca isolate was delayed, being identified by WGS. Implementation of a GES-gene PCR informed the occurrence of the second cluster in real time. In contrast to PFGE, WGS phylogenetic analysis refuted an epidemiological link between the 2 clusters; it also suggested a cascade of patient-to-patient transmission in the later cluster. A novel GES-5-encoding plasmid was present in K. oxytoca, Escherichia coli, and Enterobacter cloacae isolates from unlinked patients within the same hospital group and in human and wastewater isolates from 3 hospitals elsewhere in the United Kingdom. CONCLUSIONS: Genomic sequencing revolutionized the epidemiological understanding of the clusters; it also underlined the risk of covert plasmid propagation in healthcare settings and revealed the national distribution of the resistance-encoding plasmid. Sequencing results also informed and led to the ongoing use of enhanced diagnostic tests for detecting carbapenemases locally and nationally.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Inglaterra , Humanos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Reino Unido , beta-Lactamases/genética
14.
J Antimicrob Chemother ; 75(1): 65-71, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31538190

RESUMO

OBJECTIVES: Third-generation cephalosporin-resistant Escherichia coli from community-acquired urinary tract infections are increasingly reported worldwide. We sought to determine and characterize the mechanisms of cefotaxime resistance employed by urinary E. coli obtained from primary care, over 12 months, in Bristol and surrounding counties in South-West England. METHODS: Cefalexin-resistant E. coli isolates were identified from GP-referred urine samples using disc susceptibility testing. Cefotaxime resistance was determined by subsequent plating onto MIC breakpoint plates. ß-Lactamase genes were detected by PCR. WGS was performed on 225 isolates and analyses were performed using the Center for Genomic Epidemiology platform. Patient information provided by the referring general practices was reviewed. RESULTS: Cefalexin-resistant E. coli (n=900) isolates were obtained from urines from 146 general practices. Following deduplication by patient approximately 69% (576/836) of isolates were cefotaxime resistant. WGS of 225 isolates identified that the most common cefotaxime-resistance mechanism was blaCTX-M carriage (185/225), followed by plasmid-mediated AmpCs (pAmpCs) (17/225), AmpC hyperproduction (13/225), ESBL blaSHV variants (6/225) or a combination of both blaCTX-M and pAmpC (4/225). Forty-four STs were identified, with ST131 representing 101/225 isolates, within which clade C2 was dominant (54/101). Ciprofloxacin resistance was observed in 128/225 (56.9%) of sequenced isolates, predominantly associated with fluoroquinolone-resistant clones ST131 and ST1193. CONCLUSIONS: Most cefalexin-resistant E. coli isolates were cefotaxime resistant, predominantly caused by blaCTX-M carriage. The correlation between cefotaxime resistance and ciprofloxacin resistance was largely attributable to the high-risk pandemic clones ST131 and ST1193. Localized epidemiological data provide greater resolution than regional data and can be valuable for informing treatment choices in the primary care setting.


Assuntos
Antibacterianos/farmacologia , Cefotaxima/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/urina , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções Urinárias/microbiologia , Idoso , Proteínas de Bactérias/genética , Infecções Comunitárias Adquiridas/microbiologia , Inglaterra/epidemiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Atenção Primária à Saúde/estatística & dados numéricos , Sequenciamento Completo do Genoma , beta-Lactamases/genética
15.
J Antimicrob Chemother ; 75(9): 2471-2479, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32542329

RESUMO

OBJECTIVES: To characterize putative AmpC-hyperproducing third-generation cephalosporin-resistant E. coli from dairy farms and their phylogenetic relationships; to identify risk factors for their presence; and to assess evidence for their zoonotic transmission into the local human population. METHODS: Proteomics was used to explain differences in antimicrobial susceptibility. WGS allowed phylogenetic analysis. Multilevel, multivariable logistic regression modelling was used to identify risk factors. RESULTS: Increased use of amoxicillin/clavulanate was associated with an increased risk of finding AmpC hyperproducers on farms. Expansion of cephalosporin resistance in AmpC hyperproducers was seen in farm isolates with marR mutations (conferring cefoperazone resistance) or when AmpC was mutated (conferring fourth-generation cephalosporin and cefoperazone resistance). Phylogenetic analysis confirmed the dominance of ST88 amongst farm AmpC hyperproducers but there was no evidence for acquisition of farm isolates by members of the local human population. CONCLUSIONS: Clear evidence was found for recent farm-to-farm transmission of AmpC-hyperproducing E. coli and of adaptive mutations to expand resistance. Whilst there was no evidence of isolates entering the local human population, efforts to reduce third-generation cephalosporin resistance on dairy farms must address the high prevalence of AmpC hyperproducers. The finding that amoxicillin/clavulanate use was associated with an increased risk of finding AmpC hyperproducers is important because this is not currently categorized as a highest-priority critically important antimicrobial and so is not currently targeted for specific usage restrictions in the UK.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fazendas , Humanos , Filogenia , beta-Lactamases/genética
16.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067197

RESUMO

Third-generation cephalosporin resistance (3GC-R) in Escherichia coli is a rising problem in human and farmed-animal populations. We conducted whole-genome sequencing analysis of 138 representative 3GC-R isolates previously collected from dairy farms in southwest England and confirmed by PCR to carry acquired 3GC-R genes. This analysis identified blaCTX-M (131 isolates encoding CTX-M-1, -14, -15, -and 32 and the novel variant CTX-M-214), blaCMY-2 (6 isolates), and blaDHA-1 (1 isolate). A highly conserved plasmid was identified in 73 isolates, representing 27 E. coli sequence types. This novel ∼220-kb IncHI2 plasmid carrying blaCTX-M-32 was sequenced to closure and designated pMOO-32. It was found experimentally to be stable in cattle and human transconjugant E. coli even in the absence of selective pressure and was found by multiplex PCR to be present on 26 study farms representing a remarkable range of transmission over 1,500 square kilometers. However, the plasmid was not found among human urinary E. coli isolates we recently characterized from people living in the same geographical location, collected in parallel with farm sampling. There were close relatives of two blaCTX-M plasmids circulating among eight human and two cattle isolates, and a closely related blaCMY-2 plasmid was found in one cattle and one human isolate. However, phylogenetic evidence of recent sharing of 3GC-R strains between farms and humans in the same region was not found.IMPORTANCE Third-generation cephalosporins (3GCs) are critically important antibacterials, and 3GC resistance (3GC-R) threatens human health, particularly in the context of opportunistic pathogens such as Escherichia coli There is some evidence for zoonotic transmission of 3GC-R E. coli through food, but little work has been done examining possible transmission via interaction of people with the local near-farm environment. We characterized acquired 3GC-R E. coli found on dairy farms in a geographically restricted region of the United Kingdom and compared these with E. coli from people living in the same region, collected in parallel. While there is strong evidence for recent farm-to-farm transmission of 3GC-R strains and plasmids-including one epidemic plasmid that has a remarkable capacity to be transmitted-there was no evidence that 3GC-R E. coli found on study farms had a significant impact on circulating 3GC-R E. coli strains or plasmids in the local human population.


Assuntos
Doenças dos Bovinos/transmissão , Infecções por Escherichia coli/veterinária , Escherichia coli/fisiologia , beta-Lactamases/genética , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Inglaterra/epidemiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Epidemiologia Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , beta-Lactamases/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-29263066

RESUMO

Fluoroquinolone resistance in Gram-negative bacteria is multifactorial, involving target site mutations, reductions in fluoroquinolone entry due to reduced porin production, increased fluoroquinolone efflux, enzymes that modify fluoroquinolones, and Qnr, a DNA mimic that protects the drug target from fluoroquinolone binding. Here we report a comprehensive analysis, using transformation and in vitro mutant selection, of the relative importance of each of these mechanisms for fluoroquinolone nonsusceptibility using Klebsiella pneumoniae as a model system. Our improved biological understanding was then used to generate 47 rules that can predict fluoroquinolone susceptibility in K. pneumoniae clinical isolates. Key to the success of this predictive process was the use of liquid chromatography-tandem mass spectrometry to measure the abundance of proteins in extracts of cultured bacteria, identifying which sequence variants seen in the whole-genome sequence data were functionally important in the context of fluoroquinolone susceptibility.


Assuntos
Cromatografia Líquida/métodos , Fluoroquinolonas/farmacologia , Espectrometria de Massas em Tandem/métodos , Sequenciamento Completo do Genoma/métodos , Antibacterianos/farmacologia , Genótipo , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA