RESUMO
Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-µm histological sections at and a 100-µm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.
Assuntos
Transplante de Coração , Animais , Coração/diagnóstico por imagem , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Miocárdio/patologia , Suínos , Doadores de TecidosRESUMO
BACKGROUND: In vivo cardiac diffusion tensor imaging (cDTI) characterizes myocardial microstructure. Despite its potential clinical impact, considerable technical challenges exist due to the inherent low signal-to-noise ratio. PURPOSE: To reduce scan time toward one breath-hold by reconstructing diffusion tensors for in vivo cDTI with a fitting-free deep learning approach. STUDY TYPE: Retrospective. POPULATION: A total of 197 healthy controls, 547 cardiac patients. FIELD STRENGTH/SEQUENCE: A 3 T, diffusion-weighted stimulated echo acquisition mode single-shot echo-planar imaging sequence. ASSESSMENT: A U-Net was trained to reconstruct the diffusion tensor elements of the reference results from reduced datasets that could be acquired in 5, 3 or 1 breath-hold(s) (BH) per slice. Fractional anisotropy (FA), mean diffusivity (MD), helix angle (HA), and sheetlet angle (E2A) were calculated and compared to the same measures when using a conventional linear-least-square (LLS) tensor fit with the same reduced datasets. A conventional LLS tensor fit with all available data (12 ± 2.0 [mean ± sd] breath-holds) was used as the reference baseline. STATISTICAL TESTS: Wilcoxon signed rank/rank sum and Kruskal-Wallis tests. Statistical significance threshold was set at P = 0.05. Intersubject measures are quoted as median [interquartile range]. RESULTS: For global mean or median results, both the LLS and U-Net methods with reduced datasets present a bias for some of the results. For both LLS and U-Net, there is a small but significant difference from the reference results except for LLS: MD 5BH (P = 0.38) and MD 3BH (P = 0.09). When considering direct pixel-wise errors the U-Net model outperformed significantly the LLS tensor fit for reduced datasets that can be acquired in three or just one breath-hold for all parameters. DATA CONCLUSION: Diffusion tensor prediction with a trained U-Net is a promising approach to minimize the number of breath-holds needed in clinical cDTI studies. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.
Assuntos
Imagem de Tensor de Difusão , Coração , Humanos , Imagem de Tensor de Difusão/métodos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Suspensão da Respiração , AnisotropiaRESUMO
PURPOSE: In this work we develop and validate a fully automated postprocessing framework for in vivo diffusion tensor cardiac magnetic resonance (DT-CMR) data powered by deep learning. METHODS: A U-Net based convolutional neural network was developed and trained to segment the heart in short-axis DT-CMR images. This was used as the basis to automate and enhance several stages of the DT-CMR tensor calculation workflow, including image registration and removal of data corrupted with artifacts, and to segment the left ventricle. Previously collected and analyzed scans (348 healthy scans and 144 cardiomyopathy patient scans) were used to train and validate the U-Net. All data were acquired at 3 T with a STEAM-EPI sequence. The DT-CMR postprocessing and U-Net training/testing were performed with MATLAB and Python TensorFlow, respectively. RESULTS: The U-Net achieved a median Dice coefficient of 0.93 [0.92, 0.94] for the segmentation of the left-ventricular myocardial region. The image registration of diffusion images improved with the U-Net segmentation (P < .0001), and the identification of corrupted images achieved an F1 score of 0.70 when compared with an experienced user. Finally, the resulting tensor measures showed good agreement between an experienced user and the fully automated method. CONCLUSION: The trained U-Net successfully automated the DT-CMR postprocessing, supporting real-time results and reducing human workload. The automatic segmentation of the heart improved image registration, resulting in improvements of the calculated DT parameters.
Assuntos
Aprendizado Profundo , Artefatos , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de ComputaçãoRESUMO
LEVEL OF EVIDENCE: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:319-320.
Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Humanos , Movimento (Física)RESUMO
OBJECTIVES: Diffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients. MATERIALS AND METHODS: Biphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T. RESULTS: Adequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE). DISCUSSION: In HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease.
Assuntos
Cardiomiopatia Hipertrófica/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Cardiomiopatia Hipertrófica/patologia , Simulação por Computador , Feminino , Gadolínio/química , Gadolínio/farmacologia , Voluntários Saudáveis , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos TestesRESUMO
PURPOSE: To develop histology-informed simulations of diffusion tensor cardiovascular magnetic resonance (DT-CMR) for typical in-vivo pulse sequences and determine their sensitivity to changes in extra-cellular space (ECS) and other microstructural parameters. METHODS: We synthesised the DT-CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra-cellular volume fraction (ECV) of 16-40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm3 for pulse sequences covering short and long diffusion times: Stejskal-Tanner pulsed-gradient spin echo, second-order motion-compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths. RESULTS: The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology-based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra-cellular diffusivity (DIC ) results in large changes of MD and FA. Varying extra-cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM. CONCLUSIONS: We found that the distribution of ECS has a measurable impact on DT-CMR parameters. The observed sensitivity of MD and FA to ECV and DIC has potentially interesting applications for interpreting in-vivo DT-CMR parameters.
Assuntos
Sistema Cardiovascular/diagnóstico por imagem , Imagem de Tensor de Difusão , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Animais , Anisotropia , Simulação por Computador , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Movimento (Física) , Células Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Imagens de Fantasmas , Software , SuínosRESUMO
PURPOSE: Diffusion tensor cardiovascular magnetic resonance (DT-CMR) has a limited spatial resolution. The purpose of this study was to demonstrate high-resolution DT-CMR using a segmented variable density spiral sequence with correction for motion, off-resonance, and T2*-related blurring. METHODS: A single-shot stimulated echo acquisition mode (STEAM) echo-planar-imaging (EPI) DT-CMR sequence at 2.8 × 2.8 × 8 mm3 and 1.8 × 1.8 × 8 mm3 was compared to a single-shot spiral at 2.8 × 2.8 × 8 mm3 and an interleaved spiral sequence at 1.8 × 1.8 × 8 mm3 resolution in 10 healthy volunteers at peak systole and diastasis. Motion-induced phase was corrected using the densely sampled central k-space data of the spirals. STEAM field maps and T2* measures were obtained using a pair of stimulated echoes each with a double spiral readout, the first used to correct the motion-induced phase of the second. RESULTS: The high-resolution spiral sequence produced similar DT-CMR results and quality measures to the standard-resolution sequence in both cardiac phases. Residual differences in fractional anisotropy and helix angle gradient between the resolutions could be attributed to spatial resolution and/or signal-to-noise ratio. Data quality increased after both motion-induced phase correction and off-resonance correction, and sharpness increased after T2* correction. The high-resolution EPI sequence failed to provide sufficient data quality for DT-CMR reconstruction. CONCLUSION: In this study, an in vivo DT-CMR acquisition at 1.8 × 1.8 mm2 in-plane resolution was demonstrated using a segmented spiral STEAM sequence. Motion-induced phase and off-resonance corrections are essential for high-resolution spiral DT-CMR. Segmented variable density spiral STEAM was found to be the optimal method for acquiring high-resolution DT-CMR data.
Assuntos
Imagem de Tensor de Difusão , Imagem Ecoplanar , Frequência Cardíaca , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Anisotropia , Imagem de Difusão por Ressonância Magnética , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Razão Sinal-Ruído , Sístole , Adulto JovemRESUMO
PURPOSE: Diffusion tensor cardiovascular MR (DT-CMR) using stimulated echo acquisition mode (STEAM) with echo-planar-imaging (EPI) readouts is a low signal-to-noise-ratio (SNR) technique and therefore typically has a low spatial resolution. Spiral trajectories are more efficient than EPI, and could increase the SNR. The purpose of this study was to compare the performance of a novel STEAM spiral DT-CMR sequence with an equivalent established EPI technique. METHODS: A STEAM DT-CMR sequence was implemented with a spiral readout and a reduced field of view. An in vivo comparison of DT-CMR parameters and data quality between EPI and spiral was performed in 11 healthy volunteers imaged in peak systole and diastasis at 3 T. The SNR was compared in a phantom and in vivo. RESULTS: There was a greater than 49% increase in the SNR in vivo and in the phantom measurements (in vivo septum, systole: SNREPI = 8.0 ± 2.2, SNRspiral = 12.0 ± 2.7; diastasis: SNREPI = 8.1 ± 1.6, SNRspiral = 12.0 ± 3.7). There were no significant differences in helix angle gradient (HAG) (systole: HAGEPI = -0.79 ± 0.07 °/%; HAGspiral = -0.74 ± 0.16 °/%; P = 0.11; diastasis: HAGEPI = -0.63 ± 0.05 °/%; HAGspiral = -0.56 ± 0.14 °/%; P = 0.20), mean diffusivity (MD) in systole (MDEPI = 0.99 ± 0.06 × 10-3 mm2 /s, MDspiral = 1.00 ± 0.09 × 10-3 mm2 /s, P = 0.23) and secondary eigenvector angulation (E2A) (systole: E2AEPI = 61 ± 10 °; E2Aspiral = 63 ± 10 °; P = 0.77; diastasis: E2AEPI = 18 ± 11 °; E2Aspiral = 15 ± 8 °; P = 0.20) between the sequences. There was a small difference (≈ 20%) in fractional anisotropy (FA) (systole: FAEPI = 0.49 ± 0.03, FAspiral = 0.41 ± 0.04; P < 0.01; diastasis: FAEPI = 0.66 ± 0.05, FAspiral = 0.55 ± 0.03; P < 0.01) and mean diffusivity in diastasis (10%; MDEPI = 1.00 ± 0.12 × 10-3 mm2 /s, MDspiral = 1.10 ± 0.09 × 10-3 mm2 /s, P = 0.02). CONCLUSION: This is the first study to demonstrate DT-CMR STEAM using a spiral trajectory. The SNR was increased by using a spiral rather than the more established EPI readout, and the DT-CMR parameters were largely similar between the two sequences. Magn Reson Med 80:648-654, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Assuntos
Técnicas de Imagem Cardíaca/métodos , Imagem de Tensor de Difusão/métodos , Imagem Ecoplanar/métodos , Coração/diagnóstico por imagem , Adulto , Idoso , Algoritmos , Diástole/fisiologia , Feminino , Coração/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído , Sístole/fisiologia , Adulto JovemRESUMO
PURPOSE: To evaluate the importance of strain-correcting stimulated echo acquisition mode echo-planar imaging cardiac diffusion tensor imaging. METHODS: Healthy pigs (n = 11) were successfully scanned with a 3D cine displacement-encoded imaging with stimulated echoes and a monopolar-stimulated echo-planar imaging diffusion tensor imaging sequence at 3 T during diastasis, peak systole, and strain sweet spots in a midventricular short-axis slice. The same diffusion tensor imaging sequence was repeated ex vivo after arresting the hearts in either a relaxed (KCl-induced) or contracted (BaCl2 -induced) state. The displacement-encoded imaging with stimulated echoes data were used to strain-correct the in vivo cardiac diffusion tensor imaging in diastole and systole. The orientation of the primary (helix angles) and secondary (E2A) diffusion eigenvectors was compared with and without strain correction and to the strain-free ex vivo data. RESULTS: Strain correction reduces systolic E2A significantly when compared without strain correction and ex vivo (median absolute E2A = 34.3° versus E2A = 57.1° (P = 0.01), E2A = 60.5° (P = 0.006), respectively). The systolic distribution of E2A without strain correction is closer to the contracted ex vivo distribution than with strain correction, root mean square deviation of 0.027 versus 0.038. CONCLUSIONS: The current strain-correction model amplifies the contribution of microscopic strain to diffusion resulting in an overcorrection of E2A. Results show that a new model that considers cellular rearrangement is required. Magn Reson Med 79:2205-2215, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Assuntos
Imagem de Tensor de Difusão , Coração/diagnóstico por imagem , Algoritmos , Animais , Simulação por Computador , Diástole , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Respiração , Respiração Artificial , Software , Estresse Mecânico , Suínos , SístoleRESUMO
BACKGROUND: Stimulated-echo (STEAM) and, more recently, motion-compensated spin-echo (M2-SE) techniques have been used for in-vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) assessment of cardiac microstructure. The two techniques differ in the length scales of diffusion interrogated, their signal-to-noise ratio efficiency and sensitivity to both motion and strain. Previous comparisons of the techniques have used high performance gradients at 1.5 T in a single cardiac phase. However, recent work using STEAM has demonstrated novel findings of microscopic dysfunction in cardiomyopathy patients, when DT-CMR was performed at multiple cardiac phases. We compare STEAM and M2-SE using a clinical 3 T scanner in three potentially clinically interesting cardiac phases. METHODS: Breath hold mid-ventricular short-axis DT-CMR was performed in 15 subjects using M2-SE and STEAM at end-systole, systolic sweet-spot and diastasis. Success was defined by ≥50% of the myocardium demonstrating normal helix angles. From successful acquisitions DT-CMR results relating to tensor orientation, size and shape were compared between sequences and cardiac phases using non-parametric statistics. Strain information was obtained using cine spiral displacement encoding with stimulated echoes for comparison with DT-CMR results. RESULTS: Acquisitions were successful in 98% of STEAM and 76% of M2-SE cases and visual helix angle (HA) map scores were higher for STEAM at the sweet-spot and diastasis. There were significant differences between sequences (p < 0.05) in mean diffusivity (MD), fractional anisotropy (FA), tensor mode, transmural HA gradient and absolute second eigenvector angle (E2A). Differences in E2A between systole and diastole correlated with peak radial strain for both sequences (p ≤ 0.01). CONCLUSION: M2-SE and STEAM can be performed equally well at peak systole at 3 T using standard gradients, but at the sweet-spot and diastole STEAM is more reliable and image quality scores are higher. Differences in DT-CMR results are potentially due to differences in motion sensitivity and the longer diffusion time of STEAM, although the latter appears to be the dominant factor. The benefits of both sequences should be considered when planning future studies and sequence and cardiac phase specific normal ranges should be used for comparison.
Assuntos
Imagem de Tensor de Difusão , Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Função Ventricular Esquerda , Adulto , Suspensão da Respiração , Feminino , Voluntários Saudáveis , Coração/fisiologia , Humanos , Masculino , Valor Preditivo dos Testes , Adulto JovemRESUMO
PURPOSE: To develop an accurate method of performing free-breathing coil calibration for application to parallel imaging reconstructions of dynamic single-shot datasets. METHODS: Coil calibration data are produced through acquisition of multiple prescans before the accelerated scan, applied during free-breathing. These multiple free-breathing prescans (MFPs) provide the necessary coil information for accurate parallel imaging reconstruction of each accelerated frame of a dynamic series, under guidance of an appropriate respiratory position based matching algorithm. This is investigated in myocardial first-pass perfusion with retrospectively undersampled datasets for analysis with standard calibration techniques to guide prospectively undersampled experiments for specific demonstration of performance against a range of "temporal" calibration techniques. RESULTS: Reconstruction of the retrospectively subsampled datasets with MFP-calibrated parallel imaging showed significant improvements in relative root-mean-square error comparative to all other techniques (all P < 0.05; n = 6) for acceleration factors R > 3. Accelerated acquisitions, reconstructed by means of various temporal calibration techniques and analyzed by visual observer artifact scoring, also demonstrated a large improvement with use of MFPs. Artifact levels were reduced from an average of 2.5 ± 0.6 for the best performing implementation of TGRAPPA to 0.8 ± 0.4 for MFP-GRAPPA (P < 0.001; n = 20) (0 = none to 4 = strong, nondiagnostic). CONCLUSION: MFP as parallel imaging coil calibration data can give improved performance in free-breathing dynamic MR while maintaining maximal acceleration. Magn Reson Med 75:2315-2323, 2016. © 2015 Wiley Periodicals, Inc.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Mecânica Respiratória/fisiologia , Algoritmos , Calibragem , Bases de Dados Factuais , Humanos , Movimento/fisiologiaRESUMO
There is growing interest in cardiac diffusion tensor imaging (cDTI), but, unlike other diffusion MRI applications, there has been little investigation of the effects of noise on the parameters typically derived. One method of mitigating noise floor effects when there are multiple image averages, as in cDTI, is to average the complex rather than the magnitude data, but the phase contains contributions from bulk motion, which must be removed first. The effects of noise on the mean diffusivity (MD), fractional anisotropy (FA), helical angle (HA) and absolute secondary eigenvector angle (E2A) were simulated with various diffusion weightings (b values). The effect of averaging complex versus magnitude images was investigated. In vivo cDTI was performed in 10 healthy subjects with b = 500, 1000, 1500 and 2000 s/mm(2). A technique for removing the motion-induced component of the image phase present in vivo was implemented by subtracting a low-resolution copy of the phase from the original images before averaging the complex images. MD, FA, E2A and the transmural gradient in HA were compared for un-averaged, magnitude- and complex-averaged reconstructions. Simulations demonstrated an over-estimation of FA and MD at low b values and an under-estimation at high b values. The transition is relatively signal-to-noise ratio (SNR) independent and occurs at a higher b value for FA (b = 1000-1250 s/mm(2)) than MD (b ≈ 250 s/mm(2)). E2A is under-estimated at low and high b values with a transition at b ≈ 1000 s/mm(2), whereas the bias in HA is comparatively small. The under-estimation of FA and MD at high b values is caused by noise floor effects, which can be mitigated by averaging the complex data. Understanding the parameters of interest and the effects of noise informs the selection of the optimal b values. When complex data are available, they should be used to maximise the benefit from the acquisition of multiple averages. The combination of complex data is also a valuable step towards segmented acquisitions.
Assuntos
Artefatos , Imagem de Tensor de Difusão/métodos , Coração/fisiologia , Estatística como Assunto , Adulto , Algoritmos , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Magnetic resonance imaging (MRI) phantoms are routinely used for quality assurance in MRI centres; however their long term stability for verification of myocardial T1/ extracellular volume fraction (ECV) mapping has never been investigated. METHODS: Nickel-chloride agarose gel phantoms were formulated in a reproducible laboratory procedure to mimic blood and myocardial T1 and T2 values, native and late after Gadolinium administration as used in T1/ECV mapping. The phantoms were imaged weekly with an 11 heart beat MOLLI sequence for T1 and long TR spin-echo sequences for T2, in a carefully controlled reproducible manner for 12 months. RESULTS: There were only small relative changes seen in all the native and post gadolinium T1 values (up to 9.0 % maximal relative change in T1 values) or phantom ECV (up to 8.3 % maximal relative change of ECV, up to 2.2 % maximal absolute change in ECV) during this period. All native and post gadolinium T2 values remained stable over time with <2 % change. Temperature sensitivity testing showed MOLLI T1 values in the long T1 phantoms increasing by 23.9 ms per degree increase and short T1 phantoms increasing by 0.3 ms per degree increase. There was a small absolute increase in ECV of 0.069 % (~0.22 % relative increase in ECV) per degree increase. Variation in heart rate testing showed a 0.13 % absolute increase in ECV (~0.45 % relative increase in ECV) per 10 heart rate increase. CONCLUSIONS: These are the first phantoms reported in the literature modeling T1 and T2 values for blood and myocardium specifically for the T1mapping/ECV mapping application, with stability tested rigorously over a 12 month period. This work has significant implications for the utility of such phantoms in improving the accuracy of serial scans for myocardial tissue characterisation by T1 mapping methods and in multicentre work.
RESUMO
BACKGROUND: T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T. METHODS: A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*. RESULTS: Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007). CONCLUSION: Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*.
Assuntos
Cardiomiopatias/diagnóstico , Hemossiderose/diagnóstico , Ferro/análise , Hepatopatias/diagnóstico , Fígado/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Miocárdio/química , Adulto , Algoritmos , Artefatos , Cardiomiopatias/metabolismo , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Feminino , Hemossiderose/metabolismo , Humanos , Interpretação de Imagem Assistida por Computador , Modelos Lineares , Fígado/química , Hepatopatias/metabolismo , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Variações Dependentes do Observador , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto JovemRESUMO
PURPOSE: High resolution three-dimensional (3D) late gadolinium enhancement (LGE) imaging is performed with single R-wave gating to minimize lengthy acquisition durations. In patients with atrial fibrillation (AF), heart rate variability results in variable magnetization recovery between sequence repeats, and image quality is often poor. In this study, we implemented and tested a dynamic inversion time (dynamic-TI) scheme designed to reduce sequence sensitivity to heart rate variations. METHODS: An inversion-prepared 3D segmented gradient echo sequence was modified so that the TI varied automatically from beat-to-beat (dynamic-TI) based on the time since the last sequence repeat. 3D LGE acquisitions were performed in 17 patients prior to radio frequency ablation of persistent AF both with and without dynamic-TI. Qualitative image quality scores, blood signal-to-ghosting ratios (SGRs). and blood-myocardium contrast-to-ghosting ratios (CGRs) were compared. RESULTS: Image quality scores were higher with dynamic-TI than without dynamic-TI (2.2 ± 0.9 vs. 1.8 ± 1.1, P = 0.008), as were blood-myocardium CGRs (13.8 ± 7.6 vs. 8.3 ± 6.1, P = 0.003) and blood SGRs (19.6 ± 8.5 vs. 13.1 ± 8.0, P = 0.003). CONCLUSION: The dynamic-TI algorithm improves image quality of 3D LGE imaging in this difficult patient population by reducing the sequence sensitivity to RR interval variations
Assuntos
Algoritmos , Fibrilação Atrial/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Compostos Organometálicos , Idoso , Meios de Contraste/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organometálicos/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
PURPOSE: To investigate the influence of the diffusion weighting on in vivo cardiac diffusion tensor imaging (cDTI) and obtain optimal parameters. METHODS: Ten subjects were scanned using stimulated echo acquisition mode echo planar imaging with six b-values, from 50 to 950 s·mm(-2) , plus b = 15 s·mm(-2) reference. The relationship between b-value and both signal loss and signal-to-noise ratio measures was investigated. Mean diffusivity, fractional anisotropy, and helical angle maps were calculated using all possible b-value pairs to investigate the effects of diffusion weighting on the main and reference data. RESULTS: Signal decay at low b-values was dominated by processes with high apparent diffusion coefficients, most likely microvascular perfusion. This effect could be avoided by diffusion weighting of the reference images. Parameter maps were improved with increased b-value until the diffusion-weighted signal approached the noise floor. For the protocol used in this study, b = 750 s·mm(-2) combined with 150 s·mm(-2) diffusion weighting of the reference images proved optimal. CONCLUSION: Mean diffusivity, fractional anisotropy, and helical angle from cDTI are influenced by the b-value of the main and reference data. Using optimal values improves parameter maps and avoids microvascular perfusion effects. This optimized protocol should provide greater sensitivity to pathological changes in parameter maps.
Assuntos
Algoritmos , Imagem Ecoplanar/métodos , Ventrículos do Coração/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Adulto JovemRESUMO
PURPOSE: To develop navigator-gated free-breathing 3D spiral late gadolinium enhancement (LGE) imaging of the left ventricle at 3T and compare it with conventional breath-hold 2D Cartesian imaging. MATERIALS AND METHODS: Equivalent slices from 3D spiral and multislice 2D Cartesian acquisitions were compared in 15 subjects in terms of image quality (1, nondiagnostic to 5, excellent), sharpness (1-3), and presence of artifacts (0-2). Blood signal-to-noise ratio (SNR), blood/myocardium contrast-to-noise ratio (CNR), and quantitative sharpness were also compared. RESULTS: All 3D spiral scans were completed faster than an equivalent 2D Cartesian short-axis stack (85 vs. 230 sec, P < 0.001). Image quality was significantly higher for 2D Cartesian images than 3D spiral images (3.7 ± 0.87 vs. 3.4 ± 1.05, P = 0.03) but not for mid or apical slices specifically. There were no significant differences in qualitative and quantitative sharpness (95% confidence interval [CI]: 1.91 ± 0.67 vs. 1.93 ± 0.69, P = 0.83 and 95% CI: 0.41 ± 0.07 vs. 0.40 ± 0.09, P = 0.25, respectively), artifact scores (95% CI: 0.16 ± 0.37 vs. 0.40 ± 0.58, P = 0.16), SNR (95% CI: 121.5 ± 55.3 vs. 136.4 ± 77.9, P = 0.13), and CNR (95% CI: 101.6 ± 48.4 vs. 102.7 ± 61.8, P = 0.98). Similar enhancement ratios (0.65 vs. 0.62) and volumes (13.8 vs. 14.1cm(3) ) were measured from scar regions of three patients. CONCLUSIO: Navigator-gated 3D spiral LGE imaging can be performed in significantly and substantially shorter acquisition durations, although with some reduced image quality, than multiple breath-hold 2D Cartesian imaging while providing higher resolution and contiguous coverage.
Assuntos
Ventrículos do Coração/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Compostos Organometálicos/administração & dosagem , Disfunção Ventricular Esquerda/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Meios de Contraste/administração & dosagem , Feminino , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e EspecificidadeRESUMO
A comprehensive review is undertaken of the methods available for 3D whole-heart first-pass perfusion (FPP) and their application to date, with particular focus on possible acceleration techniques. Following a summary of the parameters typically desired of 3D FPP methods, the review explains the mechanisms of key acceleration techniques and their potential use in FPP for attaining 3D acquisitions. The mechanisms include rapid sequences, non-Cartesian k-space trajectories, reduced k-space acquisitions, parallel imaging reconstructions and compressed sensing. An attempt is made to explain, rather than simply state, the varying methods with the hope that it will give an appreciation of the different components making up a 3D FPP protocol. Basic estimates demonstrating the required total acceleration factors in typical 3D FPP cases are included, providing context for the extent that each acceleration method can contribute to the required imaging speed, as well as potential limitations in present 3D FPP literature. Although many 3D FPP methods are too early in development for the type of clinical trials required to show any clear benefit over current 2D FPP methods, the review includes the small but growing quantity of clinical research work already using 3D FPP, alongside the more technical work. Broader challenges concerning FPP such as quantitative analysis are not covered, but challenges with particular impact on 3D FPP methods, particularly with regards to motion effects, are discussed along with anticipated future work in the field.
Assuntos
Doença da Artéria Coronariana/diagnóstico , Circulação Coronária , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Animais , Artefatos , Doença da Artéria Coronariana/fisiopatologia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Qualitative and quantitative assessment of renal blood flow is valuable in the evaluation of patients with renal and renovascular diseases as well as in patients with heart failure. The temporal pattern of renal flow velocity through the cardiac cycle provides important information about renal haemodynamics. High temporal resolution interleaved spiral phase velocity mapping could potentially be used to study temporal patterns of flow and measure resistive and pulsatility indices which are measures of downstream resistance. METHODS: A retrospectively gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Phase velocity maps were acquired in the proximal right and left arteries of 10 healthy subjects in each of two separate scanning sessions. Each acquisition was analysed by two independent observers who calculated the resistive index (RI), the pulsatility index (PI), the mean flow velocity and the renal artery blood flow (RABF). Inter-study and inter-observer reproducibility of each variable was determined as the mean +/- standard deviation of the differences between paired values. The effect of background phase errors on each parameter was investigated. RESULTS: RI, PI, mean velocity and RABF per kidney were 0.71+/- 0.06, 1.47 +/- 0.29, 253.5 +/- 65.2 mm/s and 413 +/- 122 ml/min respectively. The inter-study reproducibilities were: RI -0.00 +/- 0.04 , PI -0.03 +/- 0.17, mean velocity -6.7 +/- 31.1 mm/s and RABF per kidney 17.9 +/- 44.8 ml/min. The effect of background phase errors was negligible (<2% for each parameter). CONCLUSIONS: High temporal resolution breath-hold spiral phase velocity mapping allows reproducible assessment of renal pulsatility indices and RABF.
Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Angiografia por Ressonância Magnética , Artéria Renal/fisiologia , Circulação Renal/fisiologia , Adulto , Suspensão da Respiração , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Fluxo Pulsátil/fisiologia , Reprodutibilidade dos Testes , Estudos RetrospectivosRESUMO
BACKGROUND: Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning. METHODS: A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data. RESULTS: When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13). CONCLUSIONS: High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.