Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(3): e22213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192728

RESUMO

High-risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high-risk primary and recurrent disease are distinct: in newly diagnosed patients, non-response to therapy is often associated with a higher level of tumor "stemness" paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non-curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2-mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F-108 (PF108), these features translated into rapid tumor regression and long-term survival in models of both ABCG2-overexpressing and p53-mutant high-risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier-drug association integrated into the design of the hydrolytically activatable PF108-[SN22]2  have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo-naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier-based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high-risk neuroblastoma, PF108-[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug-resistant disease presently lacking effective treatment options.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Inibidores da Topoisomerase I/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Poloxâmero/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Inibidores da Topoisomerase I/química
2.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163672

RESUMO

Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects. In this study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid tumors in high-risk cancer patients.


Assuntos
Camptotecina/análogos & derivados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Tocoferóis/uso terapêutico , Camptotecina/química , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neuroblastoma/patologia , Fatores de Risco , Análise de Sobrevida , Tocoferóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Proc Natl Acad Sci U S A ; 111(11): 4245-50, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591603

RESUMO

The fate of nanoparticle (NP) formulations in the multifaceted biological environment is a key determinant of their biocompatibility and therapeutic performance. An understanding of the degradation patterns of different types of clinically used and experimental NP formulations is currently incomplete, posing an unmet need for novel analytical tools providing unbiased quantitative measurements of NP disassembly directly in the medium of interest and in conditions relevant to specific therapeutic/diagnostic applications. In the present study, this challenge was addressed with an approach enabling real-time in situ monitoring of the integrity status of NPs in cells and biomimetic media using Förster resonance energy transfer (FRET). Disassembly of polylactide-based magnetic NPs (MNPs) was investigated in a range of model biomimetic media and in cultured vascular cells using an experimentally established quantitative correlation between particle integrity and FRET efficiency controlled through adjustments in the spectral overlap between two custom-synthesized polylactide-fluorophore (boron dipyrromethene) conjugates incorporated in MNPs. The results suggest particle disassembly governed by diffusion-reaction processes with kinetics strongly dependent on conditions promoting release of oligomeric fragments from the particle matrix. Thus, incubation in gels simulating the extracellular environment and in protein-rich serum resulted in notably lower and higher MNP decomposition rates, respectively, compared with nonviscous liquid buffers. The diffusion-reaction mechanism also is consistent with a significant cell growth-dependent acceleration of MNP processing in dividing vs. contact-inhibited vascular cells. The FRET-based analytical strategy and experimental results reported herein may facilitate the development and inform optimization of biodegradable nanocarriers for cell and drug delivery applications.


Assuntos
Materiais Biomiméticos/análise , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Teste de Materiais/métodos , Análise de Variância , Vasos Sanguíneos/citologia , Sistemas Computacionais , Transferência Ressonante de Energia de Fluorescência , Nanopartículas de Magnetita/uso terapêutico
4.
FASEB J ; 27(6): 2198-206, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23407712

RESUMO

Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.


Assuntos
Adenoviridae/genética , Artérias , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Nanopartículas de Magnetita , Stents , Angioplastia , Animais , Artérias/metabolismo , Bovinos , Linhagem Celular , Terapia Genética , Masculino , Ácido Oleico , Ratos , Ratos Sprague-Dawley , Zinco
5.
Respiration ; 88(5): 406-17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25323160

RESUMO

BACKGROUND: Gene therapy is currently under investigation as a means of managing a variety of pulmonary diseases. Unfortunately, gene transfer to bronchial epithelium has been hampered by the lack of stable and efficient transduction. Recent studies have shown that gene vectors could be tethered to the metallic surfaces of intra-arterial stents. This approach enables efficacious and site-specific adenoviral gene delivery to the vascular endothelium. OBJECTIVES: We hypothesized that airway mesh stents impregnated with viral gene vectors could be used for local gene delivery to benign and malignant bronchial epithelium. METHODS: Serotype 5 adenoviral vectors (Ad5, E1-/E3-) containing the reporter genes green fluorescent protein (Ad.GFP) or ß-galactoside/LacZ (Ad.LacZ), or a therapeutic gene, Ad.INF-ß, were coupled to either metallic mesh disks or stents via anti-Ad knob antibodies. These platforms were assessed for their ability to transfect bronchial epithelial cells from both rats and humans, as well as murine (L1C2) and human (A549) lung cancer cell lines. Gene transfer was quantified by fluorescent microscopy, scanning fluorimetry for Ad.GFP, and light microscopy studies assessing ß-galactosidase staining for Ad.LacZ. Metallic mesh and stent-mediated gene transfer was also performed in a murine flank tumor model and in a rat endotracheal tumor model in order to evaluate the therapeutic potential. RESULTS: In these studies, murine and human non-small cell lung cancer (NSCLC) cells were successfully transfected with reporter genes in vitro. Ad.LacZ-complexed mesh successfully transfected reporter genes into established murine flank NSCLC tumors. In addition, Ad.LacZ-tethered stents could effectively transfect both tracheobronchial epithelium and submucosal glands in rats. Similar epithelial transfection was achieved in ex vivo human bronchial epithelium. Pilot in vivo experimentation provided data supporting the concept that therapeutic genes could also be delivered with this technology. In additional pilot in vivo experiments, the growth of murine flank tumors was inhibited by placement of mesh disks coupled with Ad.muINF-ß, and rats bearing endotracheal tumors demonstrated a trend towards prolonged survival with insertion of Ad.ratINF-ß-tethered stents. CONCLUSIONS: Stent-mediated gene delivery successfully enabled site-specific vector administration to target rat and human airway cells in cell culture, organ culture and in vivo. Local tracheobronchial gene delivery via stents could provide a viable clinical solution for overcoming the difficulties encountered with vector delivery within the lungs, in particular by lowering requisite vector titers and by directing desired vectors to areas of interest. This strategy may prove valuable for treating tumors involving the tracheobronchial tree, as well as other nonmalignant tracheobronchial disorders.


Assuntos
Neoplasias Brônquicas/terapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Técnicas de Transferência de Genes/instrumentação , Mucosa Respiratória/patologia , Stents , Transgenes , Animais , Neoplasias Brônquicas/genética , Neoplasias Brônquicas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Galactosídeos/genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Interferon beta/genética , Ratos
6.
Pharmaceutics ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399249

RESUMO

The injury-triggered reocclusion (restenosis) of arteries treated with angioplasty to relieve atherosclerotic obstruction remains a challenge due to limitations of existing therapies. A combination of magnetic guidance and affinity-mediated arterial binding can pave the way to a new approach for treating restenosis by enabling efficient site-specific localization of therapeutic agents formulated in magnetizable nanoparticles (MNPs) and by maintaining their presence at the site of arterial injury throughout the vulnerability period of the disease. In these studies, we investigated a dual-targeted antirestenotic strategy using drug-loaded biodegradable MNPs, surface-modified with a fibrin-avid peptide to provide affinity for the injured arterial wall. The MNPs were characterized with regard to their magnetic properties, efficiency of surface functionalization, disassembly kinetics, and interaction with fibrin-coated substrates. The antiproliferative effects of MNPs formulated with paclitaxel were studied in vitro using a fetal cell line (A10) exhibiting the defining characteristics of neointimal smooth muscle cells. Animal studies examined the efficiency of combined (physical/affinity) MNP targeting to stented arteries in Sprague Dawley rats using fluorimetric analysis and fluorescent in vivo imaging. The antirestenotic effect of the dual-targeted therapy was determined in a rat model of in-stent restenosis 28 days post-treatment. The results showed that MNPs can be efficiently functionalized to exhibit a strong binding affinity using a simple two-step chemical process, without adversely affecting their size distribution, magnetic properties, or antiproliferative potency. Dual-targeted delivery strongly enhanced the localization and retention of MNPs in stented carotid arteries up to 7 days post-treatment, while minimizing redistribution of the carrier particles to peripheral tissues. Of the two targeting elements, the effect of magnetic guidance was shown to dominate arterial localization (p = 0.004 vs. 0.084 for magnetic targeting and peptide modification, respectively), consistent with the magnetically driven MNP accumulation step defining the extent of the ultimate affinity-mediated arterial binding and subsequent retention of the carrier particles. The enhanced arterial uptake and sustained presence of paclitaxel-loaded MNPs at the site of stent deployment were associated with a strong inhibition of restenosis in the rat carotid stenting model, with both the neointima-to-media ratio (N/M) and % stenosis markedly reduced in the dual-targeted treatment group (1.62 ± 0.2 and 21 ± 3 vs. 2.17 ± 0.40 and 29 ± 6 in the control animals; p < 0.05). We conclude that the dual-targeted delivery of antirestenotic agents formulated in fibrin-avid MNPs can provide a new platform for the safe and effective treatment of in-stent restenosis.

7.
Atherosclerosis ; 390: 117432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241977

RESUMO

BACKGROUND AND AIMS: Hypercholesterolemia (HC) has previously been shown to augment the restenotic response in animal models and humans. However, the mechanistic aspects of in-stent restenosis (ISR) on a hypercholesterolemic background, including potential augmentation of systemic and local inflammation precipitated by HC, are not completely understood. CD47 is a transmembrane protein known to abort crucial inflammatory pathways. Our studies have examined the interrelation between HC, inflammation, and ISR and investigated the therapeutic potential of stents coated with a CD47-derived peptide (pepCD47) in the hypercholesterolemic rabbit model. METHODS: PepCD47 was immobilized on metal foils and stents using polybisphosphonate coordination chemistry and pyridyldithio/thiol conjugation. Cytokine expression in buffy coat-derived cells cultured over bare metal (BM) and pepCD47-derivatized foils demonstrated an M2/M1 macrophage shift with pepCD47 coating. HC and normocholesterolemic (NC) rabbit cohorts underwent bilateral implantation of BM and pepCD47 stents (HC) or BM stents only (NC) in the iliac location. RESULTS: A 40 % inhibition of cell attachment to pepCD47-modified compared to BM surfaces was observed. HC increased neointimal growth at 4 weeks post BM stenting. These untoward outcomes were mitigated in hypercholesterolemic rabbits treated with pepCD47-derivatized stents. Compared to NC animals, inflammatory cytokine immunopositivity and macrophage infiltration of peri-strut areas increased in HC animals and were attenuated in HC rabbits treated with pepCD47 stents. CONCLUSIONS: Augmented inflammatory responses underlie severe ISR morphology in hypercholesterolemic rabbits. Blockage of initial platelet and leukocyte attachment to stent struts through CD47 functionalization of stents mitigates the pro-restenotic effects of hypercholesterolemia.


Assuntos
Reestenose Coronária , Hipercolesterolemia , Humanos , Animais , Coelhos , Hipercolesterolemia/complicações , Antígeno CD47 , Reestenose Coronária/etiologia , Reestenose Coronária/prevenção & controle , Modelos Animais de Doenças , Stents , Inflamação , Peptídeos/farmacologia , Citocinas
8.
Proc Natl Acad Sci U S A ; 107(18): 8346-51, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404175

RESUMO

The use of stents for vascular disease has resulted in a paradigm shift with significant improvement in therapeutic outcomes. Polymer-coated drug-eluting stents (DES) have also significantly reduced the incidence of reobstruction post stenting, a disorder termed in-stent restenosis. However, the current DESs lack the capacity for adjustment of the drug dose and release kinetics to the disease status of the treated vessel. We hypothesized that these limitations can be addressed by a strategy combining magnetic targeting via a uniform field-induced magnetization effect and a biocompatible magnetic nanoparticle (MNP) formulation designed for efficient entrapment and delivery of paclitaxel (PTX). Magnetic treatment of cultured arterial smooth muscle cells with PTX-loaded MNPs caused significant cell growth inhibition, which was not observed under nonmagnetic conditions. In agreement with the results of mathematical modeling, significantly higher localization rates of locally delivered MNPs to stented arteries were achieved with uniform-field-controlled targeting compared to nonmagnetic controls in the rat carotid stenting model. The arterial tissue levels of stent-targeted MNPs remained 4- to 10-fold higher in magnetically treated animals vs. control over 5 days post delivery. The enhanced retention of MNPs at target sites due to the uniform field-induced magnetization effect resulted in a significant inhibition of in-stent restenosis with a relatively low dose of MNP-encapsulated PTX (7.5 microg PTX/stent). Thus, this study demonstrates the feasibility of site-specific drug delivery to implanted magnetizable stents by uniform field-controlled targeting of MNPs with efficacy for in-stent restenosis.


Assuntos
Sistemas de Liberação de Medicamentos , Magnetismo , Nanopartículas Metálicas/administração & dosagem , Paclitaxel/administração & dosagem , Stents , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Oclusão de Enxerto Vascular/prevenção & controle , Masculino , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
9.
Pharm Res ; 29(5): 1232-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22274555

RESUMO

PURPOSE: Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells. METHODS: Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter. RESULTS: A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy. CONCLUSIONS: Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Magnetismo , Nanopartículas , Implantes Absorvíveis , Animais , Bovinos , Sobrevivência Celular , Células Cultivadas , Química Farmacêutica , Estabilidade de Medicamentos , Óxido Ferroso-Férrico/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Cinética , Estrutura Molecular , Tamanho da Partícula , Poliésteres/química , Tensoativos/química
10.
ACS Appl Polym Mater ; 4(2): 1196-1206, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36060230

RESUMO

Aliphatic polyesters are among materials most extensively used for producing biodegradable polymeric nanoparticles currently in development as delivery carriers and imaging agents for a range of biomedical applications. Their clinical translation requires robust particle labeling methodologies that allow reliably monitoring the fate of these formulations in complex biological environments. In the present study, a practical and versatile synthetic strategy providing conjugates of poly(D,L-lactide) representative of this class of polymers with BODIPY fluorophores varying in functional groups and excitation/emission maxima was investigated as a tool for making traceable nanoparticles. Polymer-probe conjugation was accomplished by carbodiimide-induced and 4-(dimethylamino)pyridinium 4-toluenesulfonate-catalyzed esterification of the polymer's terminal hydroxyl group, either directly with a carboxy-functionalized fluorophore or with amine-protected amino acids (Boc-glycine or Boc-6-aminohexanoic acid). In the latter case, the amino acid-derivatized polymeric precursors were reacted with amine-reactive BODIPY dyes after the removal of the protective group. Unlike nanoparticles encapsulating a strongly hydrophobic BODIPY505/515 (logPo/w = 4.3), nanoparticles labeled covalently with its carboxy-functionalized analogue (BODIPY FL) demonstrated stable particle-tracer association under perfect sink conditions. Furthermore, in contrast to the encapsulated dye rapidly partitioning from particles onto cell membranes but not stably retained by cultured cells, the internalization of the covalently attached probe was an irreversible process requiring the presence of serum, consistent with active nanoparticle uptake by endocytosis. In conclusion, the conjugation of particle-forming polymers with BODIPY fluorophores offers an effective and accessible labeling strategy for making traceable polyester-based biodegradable nanoparticles and is expected to facilitate their development and optimization as therapeutic carriers and diagnostic agents.

11.
Methods Mol Biol ; 2394: 601-616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094349

RESUMO

Spatially and temporally controlled delivery of biologicals, including gene vectors, represents an unmet need for regenerative medicine and gene therapy applications. Here we describe a method of reversible attachment of serotype 2 adeno-associated viral vectors (AAV2) to metal surfaces. This technique enables localized delivery of the vector to the target cell population in vitro and in vivo with the subsequent effective transduction of cells adjacent to the metal substrate. The underlying bioengineering approach employs coordination chemistry between the bisphosphonic groups of polyallylamine bisphosphonates and the metal atoms on the surface of metallic samples. Formation of a stable polybisphosphonate monolayer with plentiful allyl-derived amines allows for further chemical modification to consecutively append thiol-modified protein G, an anti-AAV2 antibody, and AAV2 particles. Herein we present a detailed protocols for the metal substrate modification, for the visualization of the metal surface-immobilized vector using direct and indirect fluorescent AAV2 labeling and scanning electron microscopy, for quantification of the surface-immobilized vector load with RT-PCR, and for the localized vector transduction in vitro and in vivo.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Metais , Transdução Genética
12.
Methods Mol Biol ; 2573: 217-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040598

RESUMO

Percutaneous coronary interventions (PCI) are the mainstay for treatment of advanced coronary disease. A majority of PCI involve deployment of a stent in the affected vascular segment. This chapter introduces the concept of using stents as a platform for delivering gene therapies to the vasculature with the overarching aim of mitigating in-stent restenosis (ISR), late stent thrombosis (LST), and neoatherosclerosis (NA), a triad of delayed complications that reduce the overall success rate of PCI. The chapter provides a detailed methodology for coatless reversible attachment of adenoviral (Ad) and adeno-associated viral (AAV) vectors to the metal stent struts along with representative in vitro and in vivo results.


Assuntos
Doença da Artéria Coronariana , Reestenose Coronária , Intervenção Coronária Percutânea , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/terapia , Reestenose Coronária/genética , Reestenose Coronária/terapia , Técnicas de Transferência de Genes , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Stents/efeitos adversos , Resultado do Tratamento
13.
Sci Rep ; 12(1): 19212, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357462

RESUMO

Impaired endothelialization of endovascular stents has been established as a major cause of in-stent restenosis and late stent thrombosis. Attempts to enhance endothelialization of inner stent surfaces by pre-seeding the stents with endothelial cells in vitro prior to implantation are compromised by cell destruction during high-pressure stent deployment. Herein, we report on the novel stent endothelialization strategy of post-deployment seeding of biotin-modified endothelial cells to avidin-functionalized stents. Acquisition of an avidin monolayer on the stent surface was achieved by consecutive treatments of bare metal stents (BMS) with polyallylamine bisphosphonate, an amine-reactive biotinylation reagent and avidin. Biotin-modified endothelial cells retain growth characteristics of normal endothelium and can express reporter transgenes. Under physiological shear conditions, a 50-fold higher number of recirculating biotinylated cells attached to the avidin-modified metal surfaces compared to bare metal counterparts. Delivery of biotinylated endothelial cells to the carotid arterial segment containing the implanted avidin-modified stent in rats results in immediate cell binding to the stent struts and is associated with a 30% reduction of in-stent restenosis in comparison with BMS.


Assuntos
Reestenose Coronária , Ratos , Animais , Reestenose Coronária/etiologia , Células Endoteliais , Avidina , Biotina , Stents/efeitos adversos , Constrição Patológica/complicações
14.
Sci Rep ; 12(1): 5464, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361857

RESUMO

In-stent restenosis (ISR) complicates revascularization in the coronary and peripheral arteries. Apolipoprotein A1 (apoA1), the principal protein component of HDL possesses inherent anti-atherosclerotic and anti-restenotic properties. These beneficial traits are lost when wild type apoA1(WT) is subjected to oxidative modifications. We investigated whether local delivery of adeno-associated viral (AAV) vectors expressing oxidation-resistant apoA1(4WF) preserves apoA1 functionality. The efflux of 3H-cholesterol from macrophages to the media conditioned by endogenously produced apoA1(4WF) was 2.1-fold higher than for apoA1(WT) conditioned media in the presence of hypochlorous acid emulating conditions of oxidative stress. The proliferation of apoA1(WT)- and apoA1(4FW)-transduced rat aortic smooth muscle cells (SMC) was inhibited by 66% ± 10% and 65% ± 11%, respectively, in comparison with non-transduced SMC (p < 0.001). Conversely, the proliferation of apoA1(4FW)-transduced, but not apoA1(WT)-transduced rat blood outgrowth endothelial cells (BOEC) was increased 41% ± 5% (p < 0.001). Both apoA1 transduction conditions similarly inhibited basal and TNFα-induced reactive oxygen species in rat aortic endothelial cells (RAEC) and resulted in the reduced rat monocyte attachment to the TNFα-activated endothelium. AAV2-eGFP vectors immobilized reversibly on stainless steel mesh surfaces through the protein G/anti-AAV2 antibody coupling, efficiently transduced cells in culture modeling stent-based delivery. In vivo studies in normal pigs, deploying AAV2 gene delivery stents (GDS) preloaded with AAV2-eGFP in the coronary arteries demonstrated transduction of the stented arteries. However, implantation of GDS formulated with AAV2-apoA1(4WF) failed to prevent in-stent restenosis in the atherosclerotic vasculature of hypercholesterolemic diabetic pigs. It is concluded that stent delivery of AAV2-4WF while feasible, is not effective for mitigation of restenosis in the presence of severe atherosclerotic disease.


Assuntos
Apolipoproteína A-I , Dependovirus , Animais , Apolipoproteína A-I/genética , Dependovirus/genética , Células Endoteliais , Vetores Genéticos/genética , Ratos , Stents , Suínos
15.
IUBMB Life ; 63(8): 613-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21721100

RESUMO

Magnetic targeting has shown promise to improve the efficacy and safety of different classes of therapeutic agents by enabling their active guidance to the site of disease and minimizing dissemination to nontarget tissues. However, its translation into clinic has proven difficult because of inherent limitations of traditional approaches inapplicable for deep tissue targeting in human subjects and a need for developing well-characterized and fully biocompatible magnetic carrier formulations. A novel magnetic targeting scheme based on the magnetizing effect of deep-penetrating uniform fields is presented as an example of a strategy providing a potentially clinically viable solution for preventing injury-triggered reobstruction of stented blood vessels (in-stent restenosis). The design of optimized magnetic carrier formulations and experimental results showing the feasibility of uniform field-controlled targeting for site-specific vascular delivery of small-molecule pharmaceuticals, biotherapeutics, and cells are discussed in the context of antirestenotic therapy. The versatility of this approach applicable to different classes of therapeutic agents exerting their antirestenotic effects through distinct mechanisms prompts exploring the utility of uniform field-mediated magnetic stent targeting for combination therapies with enhanced efficiencies and improved safety profiles. Additional improvements in terms of site specificity and protracted carrier retention at the site of injury may be expected from the development and use of magnetic carriers exhibiting affinity for arterial wall-specific antigens.


Assuntos
Vasos Sanguíneos/metabolismo , Magnetismo , Nanopartículas , Humanos
16.
Proc Natl Acad Sci U S A ; 105(2): 698-703, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18182491

RESUMO

A cell delivery strategy was investigated that was hypothesized to enable magnetic targeting of endothelial cells to the steel surfaces of intraarterial stents because of the following mechanisms: (i) preloading cells with biodegradable polymeric superparamagnetic nanoparticles (MNPs), thereby rendering the cells magnetically responsive; and (ii) the induction of both magnetic field gradients around the wires of a steel stent and magnetic moments within MNPs because of a uniform external magnetic field, thereby targeting MNP-laden cells to the stent wires. In vitro studies demonstrated that MNP-loaded bovine aortic endothelial cells (BAECs) could be magnetically targeted to steel stent wires. In vivo MNP-loaded BAECs transduced with adenoviruses expressing luciferase (Luc) were targeted to stents deployed in rat carotid arteries in the presence of a uniform magnetic field with significantly greater Luc expression, detected by in vivo optical imaging, than nonmagnetic controls.


Assuntos
Células Endoteliais/metabolismo , Nanopartículas Metálicas/química , Aço/química , Animais , Aorta/citologia , Aorta/patologia , Materiais Biocompatíveis/química , Artérias Carótidas/patologia , Bovinos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Magnetismo , Masculino , Modelos Biológicos , Nanotecnologia/métodos , Polímeros/química , Ratos , Ratos Sprague-Dawley , Stents
18.
ACS Appl Bio Mater ; 3(6): 3914-3922, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33251488

RESUMO

Magnetic guidance shows promise as a strategy for improving the delivery and performance of cell therapeutics. However, clinical translation of magnetically guided cell therapy requires cell functionalization protocols that provide adequate magnetic properties in balance with unaltered cell viability and biological function. Existing methodologies for characterizing cells functionalized with magnetic nanoparticles (MNP) produce aggregate results, both distorted and unable to reflect variability in either magnetic or biological properties within a preparation. In the present study, we developed an inverted-plate assay allowing determination of these characteristics using a single-platform approach, and applied this method for a comparative analysis of two loading protocols providing highly uniform vs. uneven MNP distribution across cells. MNP uptake patterns remarkably different between the two protocols were first shown by fluorimetry carried out in a well-scan mode on endothelial cells (EC) loaded with BODIPY558/568-labeled MNP. Using the inverted-plate assay we next demonstrated that, in stark contrast to unevenly loaded cells, more than 50% of uniformly functionalized EC were captured within 5 min over a broad range of MNP doses. Furthermore, magnetically captured cells exhibited unaltered viability, substrate attachment, and proliferation rates. Conducted in parallel, magnetophoretic mobility studies corroborated the markedly superior guidance capacity of uniformly functionalized cells, confirming substantially faster cell capture kinetics on a clinically relevant time scale. Taken together, these results emphasize the importance of optimizing cell preparation protocols with regard to loading uniformity as key to efficient site-specific delivery, engraftment, and expansion of the functionalized cells, essential for both improving performance and facilitating translation of targeted cell therapeutics.

19.
J Vis Exp ; (166)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33346187

RESUMO

The key complications associated with bare metal stents and drug eluting stents are in-stent restenosis and late stent thrombosis, respectively. Thus, improving the biocompatibility of metal stents remains a significant challenge. The goal of this protocol is to describe a robust technique of metal surface modification by biologically active peptides to increase biocompatibility of blood contacting medical implants, including endovascular stents. CD47 is an immunological species-specific marker of self and has anti-inflammatory properties. Studies have shown that a 22 amino acid peptide corresponding to the Ig domain of CD47 in the extracellular region (pepCD47), has anti-inflammatory properties like the full-length protein. In vivo studies in rats, and ex vivo studies in rabbit and human blood experimental systems from our lab have demonstrated that pepCD47 immobilization on metals improves their biocompatibility by preventing inflammatory cell attachment and activation. This paper describes the step-by step protocol for the functionalization of metal surfaces and peptide attachment. The metal surfaces are modified using polyallylamine bisphosphate with latent thiol groups (PABT) followed by deprotection of thiols and amplification of thiol-reactive sites via reaction with polyethyleneimine installed with pyridyldithio groups (PEI-PDT). Finally, pepCD47, incorporating terminal cysteine residues connected to the core peptide sequence through a dual 8-amino-3,6-dioxa-octanoyl spacer, are attached to the metal surface via disulfide bonds. This methodology of peptide attachment to metal surface is efficient and relatively inexpensive and thus can be applied to improve biocompatibility of several metallic biomaterials.


Assuntos
Células Sanguíneas/citologia , Metais/farmacologia , Peptídeos/metabolismo , Próteses e Implantes , Animais , Anti-Inflamatórios/farmacologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células Sanguíneas/efeitos dos fármacos , Antígeno CD47/metabolismo , Adesão Celular/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência , Monócitos/citologia , Monócitos/efeitos dos fármacos , Polietilenoimina/química , Coelhos , Ratos , Espectrometria de Fluorescência
20.
Acta Biomater ; 104: 231-240, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935523

RESUMO

In-stent restenosis (ISR) and late stent thrombosis are the major complications associated with the use of metal stents and drug eluting stents respectively. Our lab previously investigated the use of peptide CD47 in improving biocompatibility of bare metal stents in a rat carotid stent model and our results demonstrated a significant reduction in platelet deposition and ISR. However, this study did not characterize the stability of the pepCD47 on metal surfaces post storage, sterilization and deployment. Thus, the objective of the present study was 1) to test the stability of the peptide post - storage, sterilization, exposure to shear and mechanical stress and 2) to begin to expand our current knowledge of pepCD47 coated metal surfaces into the preclinical large animal rabbit model. Our results show that the maximum immobilization density of pepCD47 on metal surfaces is approximately 350 ng/cm2. 100% of the pepCD47 was retained on the metal surface post 24 weeks of storage at 4 °C, exposure to physiological shear stress, and mechanical stress of stent expansion. The bioactivity of the pepCD47 was found to be intact post 24 weeks of storage and ethylene oxide sterilization. Finally our ex vivo studies demonstrated that compared to bare metal the rabbit pepCD47 coated surfaces showed - 45% reduced platelet adhesion, a 10-fold decrease in platelet activation, and 93% endothelial cell retention. Thus, our data suggests that pepCD47 coating on metal surfaces is stable and rabbit pepCD47 shows promising preliminary results in preventing thrombosis and not inhibiting the growth of endothelial cells. STATEMENT OF SIGNIFICANCE: Biocompatibility of bare metal stents is a major challenge owing to the significantly high rates of in-stent restenosis. Previously we demonstrated that peptide CD47 functionalization improves the biocompatibility of bare metal stents in rat model. A similar trend was observed in our ex vivo studies where rabbit blood was perfused over the rabbit pepCD47 functionalized surfaces. These results provide valuable proof of concept data for future in vivo rabbit model studies. In addition, we investigated stability of the pepCD47 on metal surface and observed that pepCD47 coating is stable over time and resistant to industrially relevant pragmatic challenges.


Assuntos
Antígeno CD47/química , Peptídeos/farmacologia , Aço Inoxidável/farmacologia , Adulto , Animais , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Metais/farmacologia , Coelhos , Resistência ao Cisalhamento , Esterilização , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA