Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588430

RESUMO

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Assuntos
Córtex Cerebral , Neocórtex , Camundongos , Animais , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Neurogênese/fisiologia , Interneurônios/fisiologia , Biomarcadores/metabolismo , Neurônios GABAérgicos/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39038846

RESUMO

A persistent question in neuroscience is how early neuronal subtype identity is established during the development of neuronal circuits. Despite significant progress in the transcriptomic characterization of cortical interneurons, the mechanisms that control the acquisition of such identities as well as how they relate to function are not clearly understood. Accumulating evidence indicates that interneuron identity is achieved through the interplay of intrinsic genetic and activity-dependent programs. In this work, we focus on how progressive interactions between interneurons and pyramidal cells endow maturing interneurons with transient identities fundamental for their function during circuit assembly and how the elimination of transient connectivity triggers the consolidation of adult subtypes.

3.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464181

RESUMO

Coincidence detection is a common neural computation that identifies co-occurring stimuli by integration of inputs. In the auditory system, octopus cells act as coincidence detectors for complex sounds that include both synchronous and sequenced combinations of frequencies. Octopus cells must detect coincidence on both the millisecond and submillisecond time scale, unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds. Here, we show that octopus cell computations in the cell body are shaped by inhibition in the dendrites, which adjusts the strength and timing of incoming signals to achieve submillisecond acuity. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.

4.
Nat Commun ; 15(1): 5421, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926335

RESUMO

During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.


Assuntos
Interneurônios , Somatostatina , Tálamo , Animais , Interneurônios/metabolismo , Somatostatina/metabolismo , Somatostatina/genética , Camundongos , Tálamo/metabolismo , Optogenética , Transdução de Sinais , Masculino , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Feminino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Res Sq ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39011116

RESUMO

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their 'volume transmission' output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

6.
Res Sq ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39149479

RESUMO

The mammalian cerebral cortex comprises a complex neuronal network that maintains a delicate balance between excitatory neurons and inhibitory interneurons. Previous studies, including our own research, have shown that specific interneuron subtypes are closely associated with particular pyramidal neuron types, forming stereotyped local inhibitory microcircuits. However, the developmental processes that establish these precise networks are not well understood. Here we show that pyramidal neuron types are instrumental in driving the terminal differentiation and maintaining the survival of specific associated interneuron subtypes. In a wild-type cortex, the relative abundance of different interneuron subtypes aligns precisely with the pyramidal neuron types to which they synaptically target. In Fezf2 mutant cortex, characterized by the absence of layer 5 pyramidal tract neurons and an expansion of layer 6 intratelencephalic neurons, we observed a corresponding decrease in associated layer 5b interneurons and an increase in layer 6 subtypes. Interestingly, these shifts in composition are achieved through mechanisms specific to different interneuron types. While SST interneurons adjust their abundance to the change in pyramidal neuron prevalence through the regulation of programmed cell death, parvalbumin interneurons alter their identity. These findings illustrate two key strategies by which the dynamic interplay between pyramidal neurons and interneurons allows local microcircuits to be sculpted precisely. These insights underscore the precise roles of extrinsic signals from pyramidal cells in the establishment of interneuron diversity and their subsequent integration into local cortical microcircuits.

7.
bioRxiv ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38895403

RESUMO

Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their "volume transmission" output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity.

8.
bioRxiv ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39071350

RESUMO

The mammalian cerebral cortex comprises a complex neuronal network that maintains a delicate balance between excitatory neurons and inhibitory interneurons. Previous studies, including our own research, have shown that specific interneuron subtypes are closely associated with particular pyramidal neuron types, forming stereotyped local inhibitory microcircuits. However, the developmental processes that establish these precise networks are not well understood. Here we show that pyramidal neuron types are instrumental in driving the terminal differentiation and maintaining the survival of specific associated interneuron subtypes. In a wild-type cortex, the relative abundance of different interneuron subtypes aligns precisely with the pyramidal neuron types to which they synaptically target. In Fezf2 mutant cortex, characterized by the absence of layer 5 pyramidal tract neurons and an expansion of layer 6 intratelencephalic neurons, we observed a corresponding decrease in associated layer 5b interneurons and an increase in layer 6 subtypes. Interestingly, these shifts in composition are achieved through mechanisms specific to different interneuron types. While SST interneurons adjust their abundance to the change in pyramidal neuron prevalence through the regulation of programmed cell death, parvalbumin interneurons alter their identity. These findings illustrate two key strategies by which the dynamic interplay between pyramidal neurons and interneurons allows local microcircuits to be sculpted precisely. These insights underscore the precise roles of extrinsic signals from pyramidal cells in the establishment of interneuron diversity and their subsequent integration into local cortical microcircuits.

9.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38313283

RESUMO

Opioid receptors within the CNS regulate pain sensation and mood and are key targets for drugs of abuse. Within the adult rodent hippocampus (HPC), µ-opioid receptor agonists suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting the circuit. However, it is uncertain if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in HPC but not neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when immature PV-INs and opioids already influence primordial network rhythmogenesis. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity during circuit maturation as well as learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA