RESUMO
Owing to evidence that mitochondrial dysfunction plays a dominant role in the traumatic brain injury (TBI) pathophysiology, the Western blot (WB) based immunoblotting method is widely employed to identify changes in the mitochondrial protein expressions after neurotrauma. In WB method, the housekeeping proteins (HKPs) expression is routinely used as an internal control for sample normalization. However, the traditionally employed HKPs can be susceptible to complex cascades of TBI pathogenesis, leading to their inconsistent expression. Remarkably, our data illustrated here that mitochondrial HKPs, including Voltage-dependent anion channels (VDAC), Complex-IV, Cytochrome C and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) yielded altered expressions following penetrating TBI (PTBI) as compared to Sham. Therefore, our goal was to identify more precise normalization procedure in WB. Adult male Sprague Dawley rats (N = 6 rats/group) were used to perform PTBI, and the novel REVERT Total Protein (RTP) method was used to quantify mitochondrial protein load consistency between samples at 6 h and 24 h post-injury. Notably, the RTP method displayed superior protein normalization compared to HKPs method with higher sensitivity at both time-points between experimental groups. Our data favors application of RTP based normalization to accurately quantify protein expression where inconsistent HKPs may be evident in neuroscience research.
Assuntos
Lesões Encefálicas Traumáticas , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Western Blotting , Proteínas Mitocondriais , MitocôndriasRESUMO
Mild traumatic brain injury (mTBI) increases the risk of affective disorders, anxiety and substance use disorder. The lateral habenula (LHb) plays an important role in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between mTBI-induced LHb hyperactivity due to excitation/inhibition (E/I) imbalance and motivational deficits in male mice using a repetitive closed head injury mTBI model. A major neuromodulatory system that is responsive to traumatic brain injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function are unknown. Here, we first used retrograde tracing in male and female Cre mouse lines and identified several major KOR-expressing and two prominent Dyn-expressing inputs projecting to the mouse LHb, highlighting the medial prefrontal cortex (mPFC) and the ventromedial nucleus of the hypothalamus (VMH) as the main LHb-projecting Dyn inputs that regulate KOR signaling to the LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4 week post-injury. We observed sex-specific differences in spontaneous release of glutamate and GABA from presynaptic terminals onto LHb neurons with higher levels of presynaptic glutamate and GABA release in females compared to male mice. However, KOR effects on the spontaneous E/I ratios and synaptic drive ratio within the LHb did not differ between male and female sham and mTBI mice. KOR activation generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant but sex-similar reduction in net spontaneous E/I and synaptic drive ratios in LHb neurons of sham mice. Following mTBI, while responses to KOR activation at LHb glutamatergic synapses remained intact, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition where we observed a reduction in GABA release probability in response to KOR stimulation in LHb neurons of mTBI mice. Further analysis of percent change in spontaneous synaptic ratios induced by KOR activation revealed that independent of sex mTBI switches KOR-driven synaptic inhibition of LHb neurons (normally observed in sham mice) in a subset of mTBI mice toward synaptic excitation resulting in mTBI-induced divergence of KOR actions within the LHb. Overall, we uncovered the sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. We demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global KOR-driven synaptic inhibition within the mouse LHb independent of sex. The additional engagement of KOR-mediated action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons of a subset of mTBI mice.
Assuntos
Concussão Encefálica , Habenula , Receptores Opioides kappa , Animais , Masculino , Receptores Opioides kappa/metabolismo , Feminino , Camundongos , Habenula/metabolismo , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Sinapses/metabolismo , Dinorfinas/metabolismo , Ácido Glutâmico/metabolismo , Transmissão Sináptica , Camundongos Endogâmicos C57BLRESUMO
Mild traumatic brain injury (mTBI) increases the risk of cognitive deficits, affective disorders, anxiety and substance use disorder in affected individuals. Substantial evidence suggests a critical role for the lateral habenula (LHb) in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between persistent mTBI-induced LHb hyperactivity due to synaptic excitation/inhibition (E/I) imbalance and motivational deficits in self-care grooming behavior in young adult male mice using a repetitive closed head injury mTBI model. One of the major neuromodulatory systems that is responsive to traumatic brain and spinal cord injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function is unknown. To address this, we first used retrograde tracing to anatomically verify that the mouse LHb indeed receives Dyn/KOR expressing projections. We identified several major KOR-expressing and Dyn-expressing synaptic inputs projecting to the mouse LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4week post-injury using the repetitive closed head injury mTBI model. Similar to what we previously reported in the LHb of male mTBI mice, mTBI presynaptically diminished spontaneous synaptic activity onto LHb neurons, while shifting synaptic E/I toward excitation in female mouse LHb. Furthermore, KOR activation in either mouse male/female LHb generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant reduction in E/I ratios and decreased excitatory synaptic drive to LHb neurons of male and female sham mice. Interestingly following mTBI, while responses to KOR activation at LHb glutamatergic synapses were observed comparable to those of sham, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition. Thus, in contrast to sham LHb, we observed a reduction in GABA release probability in response to KOR stimulation in mTBI LHb, resulting in a chronic loss of KOR-mediated net synaptic inhibition within the LHb. Overall, our findings uncovered the previously unknown sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. Further, we demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global suppression of excitatory synaptic drive to the mouse LHb which could act as an inhibitory braking mechanism to prevent LHb hyperexcitability. The additional engagement of KOR-mediated modulatory action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons in male and female mTBI mice.
RESUMO
The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.
Assuntos
Hormônio Liberador da Corticotropina , Habenula , Animais , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Endocanabinoides , Habenula/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI during late adolescence (at â¼8 weeks old). In this study, we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice, as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Because persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we tested whether the LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb reverses mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors toward more passive action locking rather than escape behaviors in response to an aerial threat in both male and female mice, as well as prolonging the latency to escape responses in female mice. While this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this pre-clinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI during late adolescence.
RESUMO
Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI injury during late adolescence (at ~8 weeks old). Here we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior, and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Since persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we then tested whether LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb normalizes mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors towards more passive action-locking rather than escape behaviors in response to an aerial threat in both male and female mice as well as prolonging the latency to escape responses in female mice. While, this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this preclinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI injury during late adolescence.
RESUMO
Traumatic Brain Injury (TBI) is caused by the external physical assaults damages the brain. It is a heterogeneous disorder that remains a leading cause of death and disability in the military and civilian population of the United States. Preclinical investigations of mitochondrial responses in TBI have ascertained that mitochondrial dysfunction is an acute indicator of cellular damage and plays a pivotal role in long-term injury progression through cellular excitotoxicity. The current study was designed to provide an in-depth evaluation of mitochondrial endpoints with respect to redox and calcium homeostasis, and cell death responses following penetrating TBI (PTBI). To evaluate these pathological cascades, anesthetized adult male rats (N = 6/group) were subjected to either 10% unilateral PTBI or Sham craniectomy. Animals were euthanized at 24 h post-PTBI, and purified mitochondrial fractions were isolated from the brain injury core and perilesional areas. Overall, increased reactive oxygen and nitrogen species (ROS/RNS) production, and elevated oxidative stress markers such as 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and protein carbonyls (PC) were observed in the PTBI group compared to Sham. Mitochondrial antioxidants such as glutathione, peroxiredoxin (PRX-3), thioredoxin (TRX), nicotinamide adenine dinucleotide phosphate (NADPH), superoxide dismutase (SOD), and catalase (CAT) levels were significantly decreased after PTBI. Likewise, PTBI mitochondria displayed significant loss of Ca2+ homeostasis, early opening of mitochondrial permeability transition pore (mPTP), and increased mitochondrial swelling. Both, outer and inner mitochondrial membrane integrity markers, such as voltage-dependent anion channels (VDAC) and cytochrome c (Cyt C) expression were significantly decreased following PTBI. The apoptotic cell death was evidenced by significantly decreased B-cell lymphoma-2 (Bcl-2) and increased glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression after PTBI. Collectively, current results highlight the comprehensive picture of mitochondria-centric acute pathophysiological responses following PTBI, which may be utilized as novel prognostic indicators of disease progression and theragnostic indicators for evaluating neuroprotection therapeutics following TBI.
Assuntos
Lesões Encefálicas Traumáticas , Cálcio , Ratos , Masculino , Animais , Cálcio/metabolismo , Lesões Encefálicas Traumáticas/patologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Apoptose/fisiologia , Mitocôndrias/metabolismoRESUMO
Affective disorders including depression (characterized by reduced motivation, social withdrawal, and anhedonia), anxiety, and irritability are frequently reported as long-term consequences of mild traumatic brain injury (mTBI) in addition to cognitive deficits, suggesting a possible dysregulation within mood/motivational neural circuits. One of the important brain regions that control motivation and mood is the lateral habenula (LHb), whose hyperactivity is associated with depression. Here, we used a repetitive closed-head injury mTBI model that is associated with social deficits in adult male mice and explored the possible long-term alterations in LHb activity and motivated behavior 10-18 days post-injury. We found that mTBI increased the proportion of spontaneous tonically active LHb neurons yet decreased the proportion of LHb neurons displaying bursting activity. Additionally, mTBI diminished spontaneous glutamatergic and GABAergic synaptic activity onto LHb neurons, while synaptic excitation and inhibition (E/I) balance was shifted toward excitation through a greater suppression of GABAergic transmission. Behaviorally, mTBI increased the latency in grooming behavior in the sucrose splash test suggesting reduced self-care motivated behavior following mTBI. To show whether limiting LHb hyperactivity could restore motivational deficits in grooming behavior, we then tested the effects of Gi (hM4Di)-DREADD-mediated inhibition of LHb activity in the sucrose splash test. We found that chemogenetic inhibition of LHb glutamatergic neurons was sufficient to reverse mTBI-induced delays in grooming behavior. Overall, our study provides the first evidence for persistent LHb neuronal dysfunction due to an altered synaptic integration as causal neural correlates of dysregulated motivational states by mTBI.
Assuntos
Concussão Encefálica , Habenula , Camundongos , Masculino , Animais , Habenula/fisiologia , Concussão Encefálica/complicações , Neurônios , Motivação , Sacarose/farmacologiaRESUMO
The lateral habenula (LHb) is an epithalamic brain region associated with value-based decision making and stress evasion through its modulation of dopamine (DA)-mediated reward circuitry. Specifically, increased activity of the LHb is associated with drug addiction, schizophrenia and stress-related disorders such as depression, anxiety and posttraumatic stress disorder. Dynorphin (Dyn)/Kappa opioid receptor (KOR) signaling is a mediator of stress response in reward circuitry. Previously, we have shown that maternal deprivation (MD), a severe early life stress, increases LHb spontaneous neuronal activity and intrinsic excitability while blunting the response of LHb neurons to extrahypothalamic corticotropin-releasing factor (CRF) signaling, another stress mediator. CRF pathways also interact with Dyn/KOR signaling. Surprisingly, there has been little study of direct KOR regulation of the LHb despite its distinct role in stress, reward and aversion processing. To test the functional role of Dyn/KOR signaling in the LHb, we utilized ex-vivo electrophysiology combined with pharmacological tools in rat LHb slices. We show that activation of KORs by a KOR agonist (U50,488) exerted differential effects on the excitability of two distinct sub-populations of LHb neurons that differed in their expression of hyperpolarization-activated cation currents (HCN, Ih). Specifically, KOR stimulation increased neuronal excitability in LHb neurons with large Ih currents (Ih+) while decreasing neuronal excitability in small/negative Ih (Ih-) neurons. We found that an intact fast-synaptic transmission was required for the effects of U50,488 on the excitability of both Ih- and Ih+ LHb neuronal subpopulations. While AMPAR-, GABAAR-, or NMDAR-mediated synaptic transmission alone was sufficient to mediate the effects of U50,488 on excitability of Ih- neurons, either GABAAR- or NMDAR-mediated synaptic transmission could mediate these effects in Ih+ neurons. Consistently, KOR activation also altered both glutamatergic and GABAergic synaptic transmission where stimulation of presynaptic KORs uniformly suppressed glutamate release onto LHb neurons while primarily decreased or in some cases increased GABA release. We also found that MD significantly increased immunolabeled Dyn (the endogenous KOR agonist) labeling in neuronal fibers in LHb while significantly decreasing mRNA levels of KORs in LHb tissues compared to those from non-maternally deprived (non-MD) control rats. Moreover, the U50,488-mediated increase in LHb neuronal firing observed in non-MD rats was absent following MD. Altogether, this is the first demonstration of the existence of functional Dyn/KOR signaling in the LHb that can be modulated in response to severe early life stressors such as MD.
RESUMO
Mitochondria constitute a central role in brain energy metabolism, and play a pivotal role in the development of secondary pathophysiology and subsequent neuronal cell death following traumatic brain injury (TBI). Under normal circumstances, the brain consumes glucose as the preferred energy source for adenosine triphosphate (ATP) production over ketones. To understand the comprehensive picture of substrate-specific mitochondrial bioenergetics responses following TBI, adult male rats were subjected to either 10% unilateral penetrating ballistic-like brain injury (PBBI) or sham craniectomy (n = 5 animals per group). At 24 h post-injury, mitochondria were isolated from pooled brain regions (frontal cortex and striatum) of the ipsilateral hemisphere. Mitochondrial bioenergetics parameters were measured ex vivo in the presence of four sets of metabolic substrates: pyruvate+malate (PM), glutamate+malate (GM), succinate (Succ), and ß-hydroxybutyrate+malate (BHBM). Additionally, mitochondrial matrix dehydrogenase activities [i.e., pyruvate dehydrogenase complex (PDHC), alpha-ketoglutarate dehydrogenase complex (α-KGDHC), and glutamate dehydrogenase (GDH)] and mitochondrial membrane-bound dehydrogenase activities [i.e., electron transport chain (ETC) Complex I, II, and IV] were compared between PBBI and sham groups. Furthermore, mitochondrial coenzyme contents, including NAD(t) and FAD(t), were quantitatively measured in both groups. Collectively, PBBI led to an overall significant decline in the ATP synthesis rates (43-50%; * p < 0.05 vs. sham) when measured using each of the four sets of substrates. The PDHC and GDH activities were significantly reduced in the PBBI group (42-53%; * p < 0.05 vs. sham), whereas no significant differences were noted in α-KGDHC activity between groups. Both Complex I and Complex IV activities were significantly reduced following PBBI (47-81%; * p < 0.05 vs. sham), whereas, Complex II activity was comparable between groups. The NAD(t) and FAD(t) contents were significantly decreased in the PBBI group (27-35%; * p < 0.05 vs. sham). The decreased ATP synthesis rates may be due to the significant reductions in brain mitochondrial dehydrogenase activities and coenzyme contents observed acutely following PBBI. These results provide a basis for the use of "alternative biofuels" for achieving higher ATP production following severe penetrating brain trauma.
RESUMO
This study assessed the effect of caffeine on neurobehavioral recovery in the WRAIR penetrating ballistic-like brain injury (PBBI) model. Unilateral frontal PBBI was produced in the right hemisphere of anesthetized rats at moderate (7%-PBBI) or severe (10%-PBBI) injury levels. Animals were randomly assigned to pretreatment groups: acute caffeine (25 mg/kg CAF gavage, 1 h prior to PBBI), or chronic caffeine (0.25 g/L CAF drinking water, 30 days prior to PBBI). Motor function was evaluated on the rotarod at fixed-speed increments of 10, 15, and 20 RPM. Cognitive performance was evaluated on the Morris water maze. Acute caffeine showed no significant treatment effect on motor or cognitive outcome. Acute caffeine exposure prior to 10%-PBBI resulted in a significantly higher thigmotaxic response compared to vehicle-PBBI groups, which may indicate caffeine exacerbates post-injury anxiety/attention decrements. Results of the chronic caffeine study revealed a significant improvement in motor outcome at 7 and 10 days post-injury in the 7%-PBBI group. However, chronic caffeine exposure significantly increased the latency to locate the platform in the Morris water maze task at all injury levels. Results indicate that chronic caffeine consumption prior to a penetrating TBI may provide moderate beneficial effects to motor recovery, but may worsen the neurocognitive outcome.