Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622946

RESUMO

In this paper, the ballistic performance of a multilayered composite inspired by the structural characteristics of nacre is numerically investigated using finite element (FE) simulations. Nacre is a natural composite material found in the shells of some marine mollusks, which has remarkable toughness due to its hierarchical layered structure. The bioinspired nacre-like composites investigated here were made of five wavy aluminum alloy 7075-T651 (AA7075) layers composed of ~1.1-mm thick square tablets bonded together with toughened epoxy resin. Two composite configurations with continuous layers (either wavy or flat) were also studied. The ballistic performance of the composite plates was compared to that of a bulk monolithic AA7075 plate. The ballistic impact was simulated in the 300-600 m/s range using two types of spherical projectiles, i.e., rigid and elastoplastic. The results showed that the nacre plate exhibited improved ballistic performance compared to the bulk plate and the plates with continuous layers. The structural design of the nacre plate improved the ballistic performance by producing a more ductile failure and enabling localized energy absorption via the plastic deformation of the tablets and the globalized energy dissipation due to interface debonding and friction. All the plate configurations exhibited a better ballistic performance when impacted by an elastoplastic projectile compared to a rigid one, which is explained by the projectile plastic deformation absorbing some of the impact energy and the enlarged contact area between the projectile and the plates producing more energy absorption by the plates.

2.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235924

RESUMO

Natural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1-5 wt% henequen flour comprising particles with sizes between 90-250 µm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests. The results showed that the NFRCs' measured density, porosity, and degree of crystallinity increased with flour content. The tensile tests showed that the NFRC Young's modulus was lower than that of the printed pristine PLA. For 1 wt% flour content, the NFRCs' maximum stress and strain to failure were higher than those of the printed PLA, which was attributed to the henequen fibers acting as reinforcement and delaying crack growth. However, for 2 wt% and higher flour contents, the NFRCs' maximum stress was lower than that of the printed PLA. Microscopic characterization after testing showed an increase in voids and defects, with the increase in flour content attributed to particle agglomeration. For 1 wt% flour content, the NFRCs were also printed with raster angles of ±45° and 90° for comparison; the highest tensile properties were obtained with a 0° raster angle. Finally, adding 3 wt% content of maleic anhydride to the NFRC with 1 wt% flour content slightly increased the maximum stress. The results presented herein warrant further research to fully understand the mechanical properties of printed NFRCs made of PLA reinforced with natural henequen fibers.

3.
Materials (Basel) ; 13(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503135

RESUMO

Fiber-reinforced foamed concrete (FRFC) is a lightweight material that has the potential to perform well in seismic applications due to its low density and improved mechanical properties. However, studies focused on the seismic assessment of this material are limited. In this work, U-shaped wall specimens, made of FRFC reinforced with henequen fibers and plain foamed concrete (PFC) with a density of 900 kg/m3, were subjected to shaking table tests. PFC and FRFC were characterized using compression and tension tests. FRFC exhibited enhanced mechanical properties, which were attributed to the fibers. The dynamic tests showed that U-shaped walls made of FRFC performed better than those made of PFC. The time period prior to the collapse of the FRFC U-shaped walls was longer than that of the PFC specimens, which was attributed to the enhanced specimen integrity by the fibers. Finite element simulations of the shaking table test allowed for the prediction of the stress concentration and plastic strain that may lead to the failure of the U-shaped wall. These results showed that U-shaped walls made of FRFC have the potential to perform well in seismic applications, however, these results are preliminary and further studies are needed to support the findings of this work.

4.
Materials (Basel) ; 13(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650560

RESUMO

The mechanical characterization of plain foamed concrete (PFC) and fiber-reinforced foamed concrete (FRFC) with a density of 700 kg/m3 was performed with compression and tension tests. FRFC was reinforced with the natural fiber henequen (untreated or alkaline-treated) at volume fractions of 0.5%, 1% and 1.5%. Polypropylene fiber reinforcement was also used as a reference. For all FRFCs, the inclusion of the fibers enhanced the compressive and tensile strengths and plastic behavior, which was attributed to the increase of specimen integrity. Under compressive loading, after the peak strength, there was no considerable loss in strength and a plateau-like regime was observed. Under tensile loading, the fibers significantly increased the tensile strength of the FRFCs and prevented a sudden failure of the specimens, which was in contrast to the brittle behavior of the PFC. The tensile behavior enhancement was higher when treated henequen fibers were used, which was attributed to the increase in the fiber-matrix bond produced by the alkaline treatment. The microscopic characterization showed that the inclusion of fibers did not modify the air-void size and its distribution. Higher energy absorption was observed for FRFCs when compared to the PFC, which was attributed to the enhanced toughness and ductility by the fibers. The results presented herein warrant further research of FRFC with natural henequen fibers for engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA