Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 204(2): 694-705, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984869

RESUMO

Non-invasive prenatal tests (NIPT) to predict fetal red cell or platelet antigen status for alloimmunised women are provided for select antigens. This study reports on massively parallel sequencing (MPS) using a red cell and platelet probe panel targeting multiple nucleotide variants, plus individual identification single nucleotide polymorphisms (IISNPs). Maternal blood samples were provided from 33 alloimmunised cases, including seven with two red cell antibodies. Cell-free and genomic DNA was sequenced using targeted MPS and bioinformatically analysed using low-frequency variant detection. The resulting maternal genomic DNA allele frequency was subtracted from the cell-free DNA counterpart. Outcomes were matched against validated phenotyping/genotyping methods, where available. A 2.5% subtractive allele frequency threshold was set after comparing MPS predictions for K, RhC/c, RhE/e and Fya /Fyb against expected outcomes. This threshold was used for subsequent predictions, including HPA-15a, Jka /Jkb , Kpa /Kpb and Lua . MPS outcomes were 97.2% concordant with validated methods; one RhC case was discordantly negative and lacked IISNPs. IISNPs were informative for 30/33 cases as controls. NIPT MPS is feasible for fetal blood group genotyping and covers multiple blood groups and control targets in a single test. Noting caution for the Rh system, this has the potential to provide a personalised service for alloimmunised women.


Assuntos
Antígenos de Plaquetas Humanas , Antígenos de Grupos Sanguíneos , Gravidez , Humanos , Feminino , Antígenos de Grupos Sanguíneos/genética , Sangue Fetal , Genótipo , Estudos de Viabilidade , Diagnóstico Pré-Natal/métodos , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Transfusion ; 64(6): 1171-1176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38686705

RESUMO

BACKGROUND: We report an obstetric case involving an RhD-positive woman who had developed a red blood cell (RBC) antibody that was not detected until after delivery of a newborn, who presented with a positive direct antiglobulin test result. Immunohematology studies suggested that the maternal antibody was directed against a low-prevalence antigen on the paternal and newborn RBCs. RESULTS: Comprehensive blood group profiling by targeted exome sequencing revealed a novel nonsynonymous single nucleotide variant (SNV) RHCE c.486C>G (GenBank MZ326705) on the RHCE*Ce allele, for both the father and newborn. A subsequent genomic-based study to profile blood groups in an Indigenous Australian population revealed the same SNV in 2 of 247 individuals. Serology testing showed that the maternal antibody reacted specifically with RBCs from these two individuals. DISCUSSION: The maternal antibody was directed against a novel antigen in the Rh blood group system arising from an RHCE c.486C>G variant on the RHCE*Ce allele linked to RHD*01. The variant predicts a p.Asn162Lys change on the RhCE protein and has been registered as the 56th antigen in the Rh system, ISBT RH 004063. CONCLUSION: This antibody was of clinical significance, resulting in a mild to moderate hemolytic disease of the fetus and newborn (HDFN). In the past, the cause of such HDFN cases may have remained unresolved. Genomic sequencing combined with population studies now assists in resolving such cases. Further population studies have potential to inform the need to design population-specific red cell antibody typing panels for antibody screening in the Australian population.


Assuntos
Eritroblastose Fetal , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Feminino , Recém-Nascido , Eritroblastose Fetal/genética , Eritroblastose Fetal/imunologia , Gravidez , Masculino , Adulto , Isoanticorpos/sangue , Isoanticorpos/imunologia , Alelos , Eritrócitos/imunologia , Polimorfismo de Nucleotídeo Único
3.
Transfus Med ; 34(1): 66-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37941301

RESUMO

BACKGROUND: Rh is one of the most important blood group systems in transfusion medicine. The two homologous genes RHD and RHCE are located on chromosome 1p36.11 and encode for RhD and RhCE proteins, respectively. Complex genetic polymorphisms result in a variety of antigenic expression of D, C, E, c, and e. Here, we describe a case of a young female with D-- who developed anti-Rh17 secondary to blood transfusion and had signs of haemolytic disease of the fetus and fetal death in five consecutive pregnancies. CASE DESCRIPTION: EDTA-whole blood samples were collected from the patient, husband and eight siblings for blood grouping, phenotyping, and red cell antibody screening. Extracted DNA was genotyped by SNP-microarray and massively parallel sequencing (MPS) with targeted blood group exome sequencing. Copy number variation analysis was performed to identify structural variants in the RHD and RHCE. Routine phenotyping showed all family members were D+. The patient's red blood cells were C-E-c-e-, Rh17- and Rh46- and had anti-Rh17 and anti-e antibodies. MPS showed the patient carried a wildtype RHD sequence and homozygous for RHCE (1)-D (2-9)-CE (10) hybrid gene predicted to express a D-- phenotype. CONCLUSIONS: Our patient had a rare D-- phenotype and confirmed to have RHCE/RHD hybrid gene with replacement of 2-9 exons of RHCE by RHD sequences. Unfortunately, our patient developed anti-Rh17 and anti-e antibodies due to blood transfusion and suffered fetal demise in her very first pregnancy. The adverse outcomes could have been prevented by active prenatal management.


Assuntos
Aborto Habitual , Antígenos de Grupos Sanguíneos , Gravidez , Humanos , Feminino , Sistema do Grupo Sanguíneo Rh-Hr/genética , Variações do Número de Cópias de DNA , Genótipo , Antígenos de Grupos Sanguíneos/genética , Fenótipo , Aborto Habitual/genética , Alelos
4.
Immunohematology ; 40(1): 1-9, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739025

RESUMO

KLF transcription factor 1 (KLF1) and GATA binding protein 1 (GATA1) are transcription factors (TFs) that initiate and regulate transcription of the genes involved in erythropoiesis. These TFs possess DNA-binding domains that recognize specific nucleotide sequences in genes, to which they bind and regulate transcription. Variants in the genes that encode either KLF1 or GATA1 can result in a range of hematologic phenotypes-from benign to severe forms of thrombocytopenia and anemia; they can also weaken the expression of blood group antigens. The Lutheran (LU) blood group system is susceptible to TF gene variations, particularly KLF1 variants. Individuals heterozygous for KLF1 gene variants show reduced Lutheran antigens on red blood cells that are not usually detected by routine hemagglutination methods. This reduced antigen expression is referred to as the In(Lu) phenotype. For accurate blood typing, it is important to distinguish between the In(Lu) phenotype, which has very weak antigen expression, and the true Lunull phenotype, which has no antigen expression. The International Society of Blood Transfusion blood group allele database registers KLF1 and GATA1 variants associated with modified Lutheran expression. Here, we review KLF1 and recent novel gene variants defined through investigating blood group phenotype and genotype discrepancies or, for one report, investigating cases with unexplained chronic anemia. In addition, we include a review of the GATA1 TF, including a case report describing the second GATA1 variant associated with a serologic Lu(a-b-) phenotype. Finally, we review both past and recent reports on variations in the DNA sequence motifs on the blood group genes that disrupt the binding of the GATA1 TF and either remove or reduce erythroid antigen expression. This review highlights the diversity and complexity of the transcription process itself and the need to consider these factors as an added component for accurate blood group phenotyping.


Assuntos
Antígenos de Grupos Sanguíneos , Eritrócitos , Fator de Transcrição GATA1 , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fator de Transcrição GATA1/genética , Eritrócitos/metabolismo , Eritrócitos/imunologia , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/imunologia , Sistema do Grupo Sanguíneo Lutheran/genética , Regulação da Expressão Gênica , Eritropoese/genética
5.
Transfus Med ; 33(5): 398-402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37483014

RESUMO

BACKGROUND: Cryoprecipitate is used primarily to replenish fibrinogen levels in patients. Little is known about the presence of micro- or nano-sized particles in cryoprecipitate. Therefore, we aimed to quantify these particles and investigate some pre-analytical considerations. MATERIALS AND METHODS: Particle concentration and size distribution were determined in 10 cryoprecipitate units by nanoparticle tracking analysis (NTA). The effects of freeze-thawing cryoprecipitate and 0.45 µm filtration with either regenerated cellulose (RC) or polytetrafluoroethylene (PTFE) filters before sample analysis were examined. RESULTS: Neither the size nor concentration of particles were affected by two freeze/thaw cycles. PTFE filtration, but not RC filtration, significantly reduced particle mean and mode size compared to RC filtration and mode size compared to unfiltered cryoprecipitate. The 10 cryoprecipitate units had an average particle concentration of 2.50 × 1011 ± 1.10 × 1011 particles/mL, a mean particle size of 133.8 ± 7.5 nm and a mode particle size of 107.9 ± 11.1 nm. CONCLUSION: This study demonstrated that preanalytical filtration of cryoprecipitate units using RC filters was suitable for NTA. An additional freeze/thaw cycle did not impact NTA parameters, suggesting that aliquoting cryoprecipitate units prior to laboratory investigations is suitable for downstream analyses.


Assuntos
Fator VIII , Fibrinogênio , Nanopartículas , Humanos , Nanopartículas/análise , Tamanho da Partícula , Politetrafluoretileno , Fator VIII/química , Fibrinogênio/química , Filtração
6.
Transfusion ; 62(5): 1110-1120, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35403234

RESUMO

BACKGROUND: Red blood cell (RBC) membrane-associated blood group systems are clinically significant. Alloimmunisation is a persistent risk associated with blood transfusion owing to the antigen polymorphisms among these RBC-associated blood groups. Next-generation sequencing (NGS) offers an opportunity to characterize the blood group variant profile of a given individual. Australia comprises a large multiethnic population where most blood donors are Caucasian and blood group variants remain poorly studied among Indigenous Australians. In this study, we focused on the Tiwi Islanders, who have lived in relative isolation for thousands of years. METHODS AND MATERIALS: We predicted the blood group phenotype profiles in the Tiwi (457) and 1000 Genomes Phase 3 (1KGP3-2504) cohort individuals using RBCeq (https://www.rbceq.org/). The predicted phenotype prevalence was compared with the previous literature report. RESULTS: We report, for the first time, comprehensive blood group profiles corresponding to the 35 known blood group systems among the Indigenous Tiwi islander population and identify possible novel antigen variants therein. Our results demonstrate that the genetic makeup of the Tiwi participants is distinct from that of other populations, with a low prevalence of LU (Au[a-b+]) and ABO (A2) and D+C+c+E+e- phenotype, an absence of Diego blood group variants, and a unique RHD (DIII type4) variant. CONCLUSION: Our results may contribute to the development of a database of predicted phenotype donors among the Tiwi population and aid in improving transfusion safety for the ~2800 Tiwi people and the ~800,000 other Indigenous Australians throughout the nation.


Assuntos
Antígenos de Grupos Sanguíneos , Alelos , Austrália , Doadores de Sangue , Antígenos de Grupos Sanguíneos/genética , Genômica , Humanos
7.
Transfusion ; 62(10): 2137-2142, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36062546

RESUMO

BACKGROUND: Low-prevalence antigen sD (MNS23) is encoded by GYPB c.173C > G. Hemolytic disease of the fetus and newborn (HDFN) due to anti-sD is rare. A mother delivered a newborn whose red blood cells (RBCs) were DAT-positive and was later diagnosed with HDFN. Serum from the mother was incompatible with the father's RBCs and was used to screen 184 Thai blood donors. This study aimed to investigate the cause of HDFN in a Thai family and determine the prevalence of sD in Thai blood donors. MATERIALS AND METHODS: Three family members and four blood donors were investigated in the study. Massively Parallel Sequencing (MPS) was used for genotyping. Standard hemagglutination techniques were used in titration studies, phenotyping, and enzyme/chemical studies. Anti-s, anti-Mia , anti-JENU, and anti-sD reagents were used in serological investigations. RESULTS: The mother was GYP*Mur/Mur. The father and the four donors were GYPB*s/sD predicting S - s + sD +. The baby was GYP*Mur/sD and his RBCs were Mia +, s + w with anti-s (P3BER) and JENU+w . RBCs from two GYPB*sD -positive blood donors reacted with anti-sD (Dreyer). Proteolytic enzyme α-chymotrypsin-treated sD + cells did not react with anti-sD (Wat) produced by the GP.Mur/Mur mother but reacted with the original anti-sD (Dreyer). DISCUSSION: This is the first report of HDFN due to anti-sD in the Asian population. The genotype frequency for GYPB*sD in a selected Thai blood donor population is 2.2% (4/184). Anti-sD should be considered in mothers with Southeast Asian or East Asian background when antibody identification is unresolved in pregnancies affected by HDFN.


Assuntos
Eritroblastose Fetal , Sistema do Grupo Sanguíneo MNSs , Doadores de Sangue , Eritroblastose Fetal/epidemiologia , Feminino , Feto , Glicoforinas/genética , Humanos , Recém-Nascido , Sistema do Grupo Sanguíneo MNSs/genética , Mães , Peptídeo Hidrolases/genética , Fenótipo , Gravidez , Prevalência , Tailândia/epidemiologia
8.
Vox Sang ; 117(7): 958-965, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35412682

RESUMO

BACKGROUND AND OBJECTIVES: The LW gene encodes the LW glycoprotein that carries the antigens of the LW blood group system. LW antigens are distinct from D antigen, however, they are phenotypically related and anti-LW antibodies are often mistaken as anti-D. An antibody was detected in an Australian patient of Aboriginal descent who consistently typed as LW(a+b-). This study aimed to describe the antibody recognizing a high-prevalence antigen on the LW glycoprotein. STUDY DESIGN AND METHODS: Samples from the patient and her four siblings were investigated. DNA was genotyped by single nucleotide polymorphism (SNP)-microarray and massively parallel sequencing (MPS) platforms. Red blood cells (RBCs) were phenotyped using standard haemagglutination techniques. Antibody investigations were performed using a panel of phenotyped RBCs from adults and cord blood cells. RESULTS: SNP-microarray and MPS genotyped all family members as LW*A/A, (c.299A), predicting LW(a+b-). In addition, a novel LW*A c.309C>A single nucleotide variant was detected in all family members. The patient and one of her siblings (M4) were LW c.309C>A homozygous. Antibody from the patient reacted positive to all reagent panel RBCs and cord blood cells but negative with RBCs from LW(a-b-), Rhnull and sibling M4. Antibody failed to react with RBCs treated with dithiothreitol. CONCLUSION: Antibody detected in the patient recognized a novel high-prevalence antigen, LWEM, in the LW blood group system. LWEM-negative patients who developed anti-LWEM can be safely transfused with D+ RBCs, however, D- is preferred. Accurate antibody identification can help better manage allocation of blood products especially when D- RBCs are in short supply.


Assuntos
Antígenos de Grupos Sanguíneos , Isoanticorpos , Adulto , Austrália/epidemiologia , Antígenos de Grupos Sanguíneos/genética , Feminino , Hemaglutinação , Humanos , Prevalência , Sistema do Grupo Sanguíneo Rh-Hr/genética
9.
J Cell Mol Med ; 24(8): 4791-4803, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180339

RESUMO

Coronary artery bypass grafting (CABG) triggers a systemic inflammatory response that may contribute to adverse outcomes. Dendritic cells (DC) and monocytes are immunoregulatory cells potentially affected by CABG, contributing to an altered immune state. This study investigated changes in DC and monocyte responses in CABG patients at 5 time-points: admission, peri-operative, ICU, day 3 and day 5. Whole blood from 49 CABG patients was used in an ex vivo whole blood culture model to prospectively assess DC and monocyte responses. Lipopolysaccharide (LPS) was added in parallel to model responses to an infectious complication. Co-stimulatory and adhesion molecule expression and intracellular mediator production was measured by flow cytometry. CABG modulated monocyte and DC responses. In addition, DC and monocytes were immunoparalysed, evidenced by failure of co-stimulatory and adhesion molecules (eg HLA-DR), and intracellular mediators (eg IL-6) to respond to LPS stimulation. DC and monocyte modulation was associated with prolonged ICU length of stay and post-operative atrial fibrillation. DC and monocyte cytokine production did not recover by day 5 post-surgery. This study provides evidence that CABG modulates DC and monocyte responses. Using an ex vivo model to assess immune competency of CABG patients may help identify biomarkers to predict adverse outcomes.


Assuntos
Ponte de Artéria Coronária/efeitos adversos , Células Dendríticas/imunologia , Antígenos HLA-DR/genética , Interleucina-6/genética , Monócitos/imunologia , Idoso , Moléculas de Adesão Celular/genética , Células Dendríticas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos HLA-DR/sangue , Humanos , Interleucina-6/sangue , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Paralisia/sangue , Paralisia/imunologia , Paralisia/patologia , Cirurgia Torácica
10.
Vox Sang ; 115(7): 562-569, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32390268

RESUMO

BACKGROUND AND OBJECTIVES: Soluble mediators in packed red-blood-cell (PRBC) units have been hypothesized as a mechanism associated with transfusion-related immune modulation. Soluble mediators including damage-associated molecular patterns (DAMPs) are known to activate inflammasomes. Inflammasome complexes maturate caspase-1 and interleukin (IL)-1ß. We assessed whether PRBC supernatants (SN) modulated IL-1ß driven inflammation and whether macrophage migration inhibitory factor (MIF) was a contributing factor. MATERIALS AND METHODS: Isolated monocytes were incubated with PRBC-SN in an in vitro transfusion model. Lipopolysaccharide (LPS) was added in parallel to model a bacterial infection. Separately, recombinant MIF was used in the model to assess its role in IL-1ß driven inflammation. IL-1ß and caspase-1 were quantified in the PRBC-SN and culture SN from the in vitro model. RESULTS: PRBC-SN alone did not induce IL-1ß production from monocytes. However, PRBC-SN alone increased caspase-1 production. LPS alone induced both IL-1ß and caspase-1 production. PRBC-SN augmented LPS-driven IL-1ß and caspase-1 production. Recombinant MIF did not modulate IL-1ß production in our model. CONCLUSIONS: Soluble mediators in PRBC modulate monocyte IL-1ß inflammation, which may be a contributing factor to adverse effects of transfusion associated with poor patient outcomes. While MIF was present in PRBC-SN, we found no evidence that MIF was responsible for IL-1ß associated immune modulation.


Assuntos
Eritrócitos/metabolismo , Interleucina-1beta/metabolismo , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Caspase 1/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo
11.
Transfus Apher Sci ; 59(5): 102947, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33115620

RESUMO

Anti-D immunoglobulin prophylaxis reduces the risk of RhD negative women becoming alloimmunised to the RhD antigen and is a major preventative strategy in reducing the burden of haemolytic disease of the fetus and newborn (HDFN). HDFN also arises from other maternal red cell antibodies, with the most clinically significant, after anti-D, being anti-K, anti-c and anti-E. Among the 39 human blood group systems advanced genomic technologies are still revealing novel or rare antigens involved in maternal alloimmunisation. Where clinically significant maternal antibodies are detected in pregnancy, non-invasive prenatal testing (NIPT) of cell-free fetal DNA provides a safe way to assess the fetal blood group antigen status. This provides information as to the risk for HDFN and thus guides management strategies. In many countries, NIPT fetal RHD genotyping as a diagnostic test using real-time PCR has already been integrated into routine clinical care for the management of women with allo-anti-D to assess the risk for HDFN. In addition, screening programs have been established to provide antenatal assessment of the fetal RHD genotype in non-alloimmunised RhD negative pregnant women to target anti-D prophylaxis to those predicted to be carrying an RhD positive baby. Both diagnostic and screening assays exhibit high accuracy (over 99 %). NIPT fetal genotyping for atypical (other than RhD) blood group antigens presents more challenges as most arise from a single nucleotide variant. Recent studies show potential for genomic and digital technologies to provide a personalised medicine approach with NIPT to assess fetal blood group status for women with other (non-D) red cell antibodies to manage the risk for HDFN.


Assuntos
Anemia Hemolítica Autoimune/diagnóstico , Eritroblastose Fetal/imunologia , Testes Genéticos/métodos , Isoanticorpos/imunologia , Diagnóstico Pré-Natal/métodos , Anemia Hemolítica Autoimune/patologia , Feminino , Humanos , Gravidez
12.
Transfus Med Hemother ; 47(4): 279-286, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32884500

RESUMO

BACKGROUND: MNS blood group system genes GYPA and GYPB share a high degree of sequence homology and gene structure. Homologous exchanges between GYPA and GYPB form hybrid genes encoding hybrid glycophorins GP(A-B-A) and GP(B-A-B). Over 20 hybrid glycophorins have been characterised. Each has a distinct phenotype defined by the profile of antigens expressed including Mia. Seven hybrid glycophorins carry Mia and have been reported in Caucasian and Asian population groups. In Australia, the population is diverse; however, the prevalence of hybrid glycophorins in the population has never been determined. The aims of this study were to determine the frequency of Mia and to classify Mia-positive hybrid glycophorins in an Australian blood donor population. METHOD: Blood samples from 5,098 Australian blood donors were randomly selected and screened for Mia using anti-Mia monoclonal antibody (CBC-172) by standard haemagglutination technique. Mia-positive red blood cells (RBCs) were further characterised using a panel of phenotyping reagents. Genotyping by high-resolution melting analysis and DNA sequencing were used to confirm serology. RESULT: RBCs from 11/5,098 samples were Mia-positive, representing a frequency of 0.22%. Serological and molecular typing identified four types of Mia-positive hybrid glycophorins: GP.Hut (n = 2), GP.Vw (n = 3), GP.Mur (n = 5), and 1 GP.Bun (n = 1). GP.Mur was the most common. CONCLUSION: This is the first comprehensive study on the frequency of Mia and types of hybrid glycophorins present in an Australian blood donor population. The demographics of Australia are diverse and ever-changing. Knowing the blood group profile in a population is essential to manage transfusion needs.

13.
Transfusion ; 59(2): 768-778, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520525

RESUMO

BACKGROUND: The distribution of RBC antigens, which define blood group types, differs among populations. In contrast to many world populations, blood group profiles for Indigenous Australians have not been well studied. As it is now possible to predict comprehensive blood group antigen profiles from genomic data sets, we aimed to apply this for Indigenous Australians and to provide a comparison to other major world populations. STUDY DESIGN AND METHODS: Whole exome sequence data for 72 Western Desert Indigenous Australians was provided by the Telethon Kids Institute. Variants (against hg19) were annotated using computer software (ANNOVAR, Qiagen Bioinformatics) and filtered to include only variants in genes for 36 blood group systems, and the transcription factors KLF1 and GATA1. The RHCE*C allele and RHD zygosity were identified by copy number variant analysis of sequence alignments. The impact of missense variants was investigated in silico using a meta-predictor of disease-causing variants (Meta-SNP). RESULTS: For 21 blood group systems the predicted blood group antigen frequencies were comparable to those for other major world populations. For 13 systems, interesting points of contrast were identified. Furthermore, we identified 12 novel variants, one novel D allele, and four rare variants with potential clinical significance. CONCLUSION: This is the first systematic assessment of genomic data to elucidate blood group antigen profiles for Indigenous Australians who are linguistically and culturally diverse. Our study paves the way to understanding the geographic distribution of blood group variants in different Indigenous groups and the associated RBC phenotypes. This in turn is expected to guide transfusion practice for Indigenous individuals.


Assuntos
Alelos , Antígenos de Grupos Sanguíneos/genética , Exoma , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Polimorfismo de Nucleotídeo Único , Austrália , Humanos
14.
Transfusion ; 59(2): 648-658, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30618208

RESUMO

BACKGROUND: Zika virus (ZIKV) is transfusion-transmissible. In Australia the primary vector, Aedes aegypti, is established in the north-east, such that local transmission is possible following importation of an index case, which has the potential to impact on blood transfusion safety and public health. We estimated the basic reproduction number (R 0 ) to model the epidemic potential of ZIKV in Australian locations, compared this with the ecologically similar dengue viruses (DENV), and examined possible implications for blood transfusion safety. STUDY DESIGN AND METHODS: Varying estimates of vector control efficiency and extrinsic incubation period, "best-case" and "worst-case" scenarios of monthly R 0 for ZIKV and DENV were modeled from 1996 to 2015 in 11 areas. We visualized the geographical distribution of blood donors in relation to areas with epidemic potential for ZIKV. RESULTS: Epidemic potential (R 0 > 1) existed for ZIKV and DENV throughout the study period in a number of locations in northern Australia (Cairns, Darwin, Rockhampton, Thursday Island, Townsville, and Brisbane) during the warmer months of the year. R 0 for DENV was greater than ZIKV and was broadly consistent with annual estimates in Cairns. Increased vector control efficiency markedly reduced the epidemic potential and shortened the season of local transmission. Australian locations that provide the greatest number of blood donors did not have epidemic potential for ZIKV. CONCLUSION: We estimate that areas of north-eastern Australia could sustain local transmission of ZIKV. This early contribution to understanding the epidemic potential of ZIKV may assist in the assessment and management of threats to blood transfusion safety.


Assuntos
Aedes , Segurança do Sangue , Transfusão de Sangue , Modelos Biológicos , Controle de Mosquitos , Mosquitos Vetores , Infecção por Zika virus , Zika virus , Animais , Austrália/epidemiologia , Feminino , Humanos , Masculino , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão
15.
Transfusion ; 59(7): 2368-2374, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070793

RESUMO

BACKGROUND: A fatal case of autochthonous Babesia microti infection was reported in Australia in 2012. This has implications for Australian public health and, given that babesiosis is transfusion transmissible, has possible implications for Australian blood transfusion recipients. We investigated the seroprevalence of antibodies to B. microti in Australian blood donors and in patients with clinically suspected babesiosis. STUDY DESIGN AND METHODS: Plasma samples (n = 7,000) from donors donating in at-risk areas and clinical specimens from patients with clinically suspected babesiosis (n = 29) were tested for B. microti IgG by immunofluorescence assay (IFA). IFA initially reactive samples were tested for B. microti IgG and IgM by immunoblot and B. microti DNA by polymerase chain reaction. RESULTS: Although five donors were initially reactive for B. microti IgG by IFA, none was confirmed for B. microti IgG (zero estimate; 95% confidence interval, 0%-0.05%) and all were negative for B. microti DNA. None of the patient samples had B. microti IgG, IgM, or DNA. CONCLUSIONS: This study does not provide evidence for widespread exposure to B. microti in Australian blood donors at local theoretical risk, nor does it provide evidence of B. microti infection in Australian patients with clinically suspected babesiosis. Given that confirmed evidence of previous exposure to B. microti was not seen, these data suggest that transmission of this pathogen is currently uncommon in Australia and unlikely to pose a risk to transfusion safety at present.


Assuntos
Anticorpos Antiprotozoários/sangue , Babesia microti , Babesiose , Doadores de Sangue , Segurança do Sangue , Transfusão de Sangue , DNA de Protozoário/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália/epidemiologia , Babesiose/sangue , Babesiose/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos
16.
Transfusion ; 58(5): 1182-1188, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29582441

RESUMO

BACKGROUND: D- individuals with previous D-incompatible pregnancies and/or blood transfusions, as well as those who are actively immunized with small-volume D+ red blood cells (RBCs), are stimulated to produce RhIG. Many factors could influence the stimulation of immunoglobulin production in response to foreign antigen (such as antigen immunogenicity and genetic factors), and it is unknown whether genetic markers could potentially identify responder anti-D donors. STUDY DESIGN AND METHODS: Anti-D donors were assigned a responder profile based on their serum RhIG levels (n = 431). A subset of donors (n = 272) had DNA extracted for polymerase chain reaction genotyping assays for target genes in antigen presentation and pathogen recognition receptors (TLR2, TLR4, CD14, FcγRIIA, and the MHC Class II locus HLA-DRB1). Statistical tests for associations between anti-D donor responder profiles and genetic factors were performed. RESULTS: A large proportion of our donors (38.7%) were classified as nonresponder donors, despite receiving multiple D+ RBC immunizations, whereas female sex was significantly associated with an all-responder profile (p < 0.001). The presence of the DRB1*15 allele and absence of the DRB1*04 allele were more likely to be associated with a responder anti-D donor, although not significantly after Bonferroni correction. A combination of the DRB1*15 allele and female sex was significantly associated with an anti-D donor responder profile. CONCLUSION: This study has identified female sex and the HLA-DRB1*15 allele as potentially useful markers that could be used to screen donors before entry into D immunization programs.


Assuntos
Doadores de Sangue , Cadeias HLA-DRB1/genética , Isoimunização Rh , Imunoglobulina rho(D)/imunologia , Alelos , Biomarcadores , Feminino , Testes Genéticos , Cadeias HLA-DRB1/imunologia , Humanos , Fatores Sexuais
17.
Transfusion ; 58(10): 2260-2264, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30222865

RESUMO

BACKGROUND: RhD DEL variants may show complete or partial expression of RhD epitopes. There have been only rare reports of anti-D causing hemolytic disease of the fetus and newborn (HDFN) in this context. We report a case of severe HDFN associated with a recently described DEL variant. CASE REPORT: A multiparous woman presented with an allo-anti-D and showed incongruent phenotyping and genotyping results on initial study. Further investigations identified the RHD mutation, defined as RHD*148+1T and named RHD*01EL.31, which had been previously associated with a DEL phenotype. Extended RhD phenotyping by adsorption-elution showed that there was reactivity with four of nine monoclonal anti-D antibodies, suggesting a partial DEL phenotype. The first child showed no clinical evidence of HDFN, although the cord direct antiglobulin test was positive. The second child developed fetal anemia treated with intrauterine transfusion, and neonatal hyperbilirubinemia requiring exchange transfusion. CONCLUSION: The RHD allele, RHD*148+1T, results in a partial Del phenotype, and the anti-D formed in pregnant women with this phenotype is capable of causing severe HDFN.


Assuntos
Eritroblastose Fetal/etiologia , Imunoglobulina rho(D)/imunologia , Deleção de Sequência , Adulto , Alelos , Sequência de Aminoácidos , Eritroblastose Fetal/genética , Eritroblastose Fetal/imunologia , Feminino , Humanos , Recém-Nascido , Gravidez , Complicações Hematológicas na Gravidez , Sistema do Grupo Sanguíneo Rh-Hr , Adulto Jovem
18.
Transfusion ; 58(10): 2414-2420, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30222867

RESUMO

INTRODUCTION: KLF1 is an essential transcriptional activator that drives erythropoiesis. KLF1 variants can result in the Inhibitor of Lutheran, or In(Lu), phenotype where red blood cells (RBCs) have reduced BCAM (LU) and CD44 (IN). Other RBC surface molecules also have changed expression; however, there is controversy in the literature regarding which are truly impacted. We aimed to investigate KLF1 variants in the Australian population. STUDY DESIGN AND METHODS: In(Lu) samples were sourced through screening and through the RBC reference laboratory. Blood donor samples (8036) were screened to identify weakened/absent Lub antigen. Samples were genotyped by massively parallel sequencing, while surface carbohydrates and blood group molecules were assessed by flow cytometry. Hemoglobin (Hb) types were analyzed by high-performance liquid chromatography. RESULTS: Four of 8036 donors were identified to be In(Lu), and two previously identified In(Lu) samples were provided from the RBC reference laboratory. Five different KLF1 variants were identified; two were novel: c.954G>C/p.Trp318Cys and c.421C>T/p.Arg141*. BCAM and CD44 were reduced in all samples, consistent with previous reports. As a group, In(Lu) RBCs had reduced CD35 (KN), ICAM4 (LW), and CD147 (OK), and demonstrated increased binding of lectins ECA and SNAI. One In(Lu) sample had elevated HbF and another elevated HbA2. CONCLUSION: Different KLF1 variants may potentially produce variable phenotypes. A framework for investigating KLF1 variants and their phenotypic impact has been provided. In the future, given available international databases, further testing algorithms (as advocated here) will allow for correlation of phenotype with genotype and therefore accurately document this variability between KLF1 variants.


Assuntos
Antígenos de Grupos Sanguíneos/sangue , Eritrócitos/imunologia , Variação Genética , Fatores de Transcrição Kruppel-Like/genética , Sistema do Grupo Sanguíneo Lutheran/química , Austrália , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Estudos de Associação Genética , Humanos , Fenótipo
19.
Transfusion ; 58(7): 1763-1771, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897102

RESUMO

BACKGROUND: MNS hybrid GP(B-A-B) glycophorins are more commonly found in Southeast Asians and alloantibodies to antigens they carry are clinically significant. Detection of hybrid glycophorins by serologic techniques is limited due to lack of commercial reagents. In this study, a genotyping method for GP(B-A-B) hybrid glycophorins based on high-resolution melting (HRM) analysis was applied for genotyping analysis in the Chinese Southern Han population. STUDY DESIGN AND METHODS: DNA samples from 3104 Chinese Southern Han blood donors were collected. GYP(B-A-B) genotypes were analyzed by HRM assay. Parts of samples (n = 106) were also tested by multiplex ligation-dependent probe amplification (MLPA) assay. Direct sequencing was conducted in samples with variant melting curve profiles. RESULTS: A total of five GYP(B-A-B) genotypes (201/3104, 6.5%) were identified, which were GYP*Mur heterozygote (n = 194), GYP*Mur homozygote (n = 3), GYP*Bun heterozygote (n = 2), GYP*HF heterozygote (n = 1), and a novel GYP(B-A-B) hybrid allele (n = 1). Genotyping results for GYP*Mur and wild-type GYPB samples obtained by HRM were consistent with MLPA, while GYP*Bun and GYP*HF heterozygote identified by HRM could only be identified to have one copy of 5' inactive splice site of GYPB Pseudoexon 3 by MLPA. In addition, 10 single-nucleotide polymorphisms (SNPs) including four known and six novel SNPs were identified in 31 samples. One sample was identified carrying both GYP*Mur and GYP*Sch alleles. CONCLUSION: The HRM assay could distinguish the GYP(B-A-B) hybrid alleles successfully. Polymorphisms identified within the GYPB gene should be taken into consideration when developing GYP(B-A-B) genotyping kits for the Chinese population.


Assuntos
Sistema do Grupo Sanguíneo MNSs/genética , Povo Asiático , Genótipo , Técnicas de Genotipagem , Glicoforinas/genética , Heterozigoto , Homozigoto , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
20.
Transfusion ; 58(2): 485-492, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29350414

RESUMO

BACKGROUND: Emerging transfusion-transmissible pathogens, including arboviruses such as West Nile, Zika, dengue, and Ross River viruses, are potential threats to transfusion safety. The most prevalent arbovirus in humans in Australia is Ross River virus (RRV); however, prevalence varies substantially around the country. Modeling estimated a yearly risk of 8 to 11 potentially RRV-viremic fresh blood components nationwide. This study aimed to measure the occurrence of RRV viremia among donors who donated at Australian collection centers located in areas with significant RRV transmission during one peak season. STUDY DESIGN AND METHODS: Plasma samples were collected from donors (n = 7500) who donated at the selected collection centers during one peak season. Viral RNA was extracted from individual samples, and quantitative reverse transcription-polymerase chain reaction was performed. RESULTS: Regions with the highest rates of RRV transmission were not areas where donor centers were located. We did not detect RRV RNA among 7500 donations collected at the selected centers, resulting in a zero risk estimate with a one-sided 95% confidence interval of 0 to 1 in 2019 donations. CONCLUSION: Our results suggest that the yearly risk of collecting a RRV-infected blood donation in Australia is low and is at the lower range of previous risk modeling. The majority of Australian donor centers were not in areas known to be at the highest risk for RRV transmission, which was not taken into account in previous models based on notification data. Therefore, we believe that the risk of RRV transfusion transmission in Australia is acceptably low and appropriately managed through existing risk management, including donation restrictions and recall policies.


Assuntos
Infecções por Alphavirus/sangue , Doadores de Sangue , Segurança do Sangue , RNA Viral/sangue , Ross River virus , Infecções por Alphavirus/epidemiologia , Austrália/epidemiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA