Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 278: 120275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451375

RESUMO

Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.


Assuntos
Longevidade , Magnetoencefalografia , Humanos , Adulto , Estudos Transversais , Encéfalo/fisiologia , Mapeamento Encefálico
2.
Brain ; 145(4): 1285-1298, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333312

RESUMO

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
3.
Brain Topogr ; 36(5): 750-765, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354244

RESUMO

Genetic generalized epilepsy (GGE) is conceptualized as a brain disorder involving distributed bilateral networks. To study these networks, simultaneous EEG-fMRI measurements can be used. However, inside-MRI EEG suffers from strong MR-related artifacts; it is not established whether EEG-based metrics in EEG-fMRI resting-state measurements are suitable for the analysis of group differences at source-level. We evaluated the impact of the inside-MR measurement condition on statistical group comparisons of EEG on source-level power and functional connectivity in patients with GGE versus healthy controls. We studied the cross-modal spatial relation of statistical group differences in seed-based FC derived from EEG and parallel fMRI. We found a significant increase in power and a frequency-specific change in functional connectivity for the inside MR-scanner compared to the outside MR-scanner condition. For power, we found reduced group difference between GGE and controls both in terms of statistical significance as well as effect size. Group differences for ImCoh remained similar both in terms of statistical significance as well as effect size. We found increased seed-based FC for GGE patients from the thalamus to the precuneus cortex region in fMRI, and in the theta band of simultaneous EEG. Our findings suggest that the analysis of EEG functional connectivity based on ImCoh is suitable for MR-EEG, and that relative group difference in a comparison of patients with GGE against controls are preserved. Spatial correspondence of seed-based FC group differences between the two modalities was found for the thalamus.


Assuntos
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Imageamento por Ressonância Magnética , Lobo Parietal , Vias Neurais , Eletroencefalografia
4.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
5.
Epilepsia ; 63(7): 1643-1657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35416282

RESUMO

OBJECTIVE: Genetic generalized epilepsy (GGE) is characterized by aberrant neuronal dynamics and subtle structural alterations. We evaluated whether a combination of magnetic and electrical neuronal signals and cortical thickness would provide complementary information about network pathology in GGE. We also investigated whether these imaging phenotypes were present in healthy siblings of the patients to test for genetic influence. METHODS: In this cross-sectional study, we analyzed 5 min of resting state data acquired using electroencephalography (EEG) and magnetoencephalography (MEG) in patients, their siblings, and controls, matched for age and sex. We computed source-reconstructed power and connectivity in six frequency bands (1-40 Hz) and cortical thickness (derived from magnetic resonance imaging). Group differences were assessed using permutation analysis of linear models for each modality separately and jointly for all modalities using a nonparametric combination. RESULTS: Patients with GGE (n = 23) had higher power than controls (n = 35) in all frequencies, with a more posterior focus in MEG than EEG. Connectivity was also increased, particularly in frontotemporal and central regions in theta (strongest in EEG) and low beta frequencies (strongest in MEG), which was eminent in the joint EEG/MEG analysis. EEG showed weaker connectivity differences in higher frequencies, possibly related to drug effects. The inclusion of cortical thickness reinforced group differences in connectivity and power. Siblings (n = 18) had functional and structural patterns intermediate between those of patients and controls. SIGNIFICANCE: EEG detected increased connectivity and power in GGE similar to MEG, but with different spectral sensitivity, highlighting the importance of theta and beta oscillations. Cortical thickness reductions in GGE corresponded to functional imaging patterns. Our multimodal approach extends the understanding of the resting state in GGE and points to genetic underpinnings of the imaging markers studied, providing new insights into the causes and consequences of epilepsy.


Assuntos
Mapeamento Encefálico , Epilepsia Generalizada , Encéfalo , Mapeamento Encefálico/métodos , Estudos Transversais , Eletroencefalografia/métodos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Fenótipo , Irmãos
6.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656586

RESUMO

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Biomarcadores , Estudos Transversais , Epilepsia/complicações , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações
7.
Am J Med Genet A ; 185(12): 3838-3843, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34327820

RESUMO

Pathogenic variants in HECW2 are extremely rare. So far, only 19 cases have been reported. They were associated with epilepsy, intellectual disability, absent language, hypotonia, and autism. As these cases were all de novo mutations, mostly presenting without identical variants, variable expressivity has never been investigated. Here, we describe the first family with the same novel variant in HECW2. A 19-year old female patient presented with bursts of generalized spike-wave discharges and intellectual disability. We performed next-generation-sequencing, to detect the genetic cause. Next-generation-sequencing revealed a novel likely pathogenic variant in HECW2 (c.3571C>T; p.Arg1191Trp) in the index patient, her mother and brother. They showed some similar phenotypic patterns with intellectual disability, hypotonia and generalized epileptiform patterns. However, the mother was less severely affected and epileptiform patterns were less frequent. The brother presented with additional autistic features. In contrast to previous cases, the speech of all individuals was only mildly impaired. This is the first case report of a family with the same novel likely pathogenic variant in HECW2 and as such provides insight into the phenotypic variability of this mutation. The expressivity of symptoms may be so mild that genetic and EEG analysis are needed to disclose the correct diagnosis.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Epilepsia/patologia , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Adulto Jovem
8.
Brain ; 143(8): 2454-2473, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814957

RESUMO

The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.


Assuntos
Encéfalo/patologia , Síndromes Epilépticas/patologia , Substância Branca/patologia , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
9.
Hum Brain Mapp ; 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32468614

RESUMO

Epilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller-scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care. Through the infrastructure and concepts now well-established by the ENIGMA Consortium, ENIGMA-Epilepsy was established to strengthen epilepsy neuroscience by greatly increasing sample sizes, leveraging ideas and methods established in other ENIGMA projects, and generating a body of collaborating scientists and clinicians to drive forward robust research. Here we review published, current, and future projects, that include structural MRI, diffusion tensor imaging (DTI), and resting state functional MRI (rsfMRI), and that employ advanced methods including structural covariance, and event-based modeling analysis. We explore age of onset- and duration-related features, as well as phenomena-specific work focusing on particular epilepsy syndromes or phenotypes, multimodal analyses focused on understanding the biology of disease progression, and deep learning approaches. We encourage groups who may be interested in participating to make contact to further grow and develop ENIGMA-Epilepsy.

10.
Hum Brain Mapp ; 40(17): 5042-5055, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403244

RESUMO

We assessed the applicability of MP2RAGE for voxel-based morphometry. To this end, we analyzed its brain tissue segmentation characteristics in healthy subjects and the potential for detecting focal epileptogenic lesions (previously visible and nonvisible). Automated results and expert visual interpretations were compared with conventional VBM variants (i.e., T1 and T1 + FLAIR). Thirty-one healthy controls and 21 patients with focal epilepsy were recruited. 3D T1-, T2-FLAIR, and MP2RAGE images (consisting of INV1, INV2, and MP2 maps) were acquired on a 3T MRI. The effects of brain tissue segmentation and lesion detection rates were analyzed among single- and multispectral VBM variants. MP2-single-contrast gave better delineation of deep, subcortical nuclei but was prone to misclassification of dura/vessels as gray matter, even more than conventional-T1. The addition of multispectral combinations (INV1, INV2, or FLAIR) could markedly reduce such misclassifications. MP2 + INV1 yielded generally clearer gray matter segmentation allowing better differentiation of white matter and neighboring gyri. Different models detected known lesions with a sensitivity between 60 and 100%. In non lesional cases, MP2 + INV1 was found to be best with a concordant rate of 37.5%, specificity of 51.6% and concordant to discordant ratio of 0.60. In summary, we show that multispectral MP2RAGE VBM (e.g., MP2 + INV1, MP2 + INV2) can improve brain tissue segmentation and lesion detection in epilepsy.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Substância Branca/diagnóstico por imagem
11.
Mov Disord ; 34(1): 67-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468694

RESUMO

OBJECTIVES: The objectives of this study were to investigate (1) the annual rate of progression of motor and cognitive symptoms and (2) baseline predictors of different modalities for this progression in early Parkinson's disease (PD) when compared with healthy controls. METHODS: A total of 135 de novo PD and 109 healthy controls (of the De Novo Parkinson cohort) were investigated at baseline and after 24 and 48 months. To delineate motor progression and cognitive decline, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) and the Mini-Mental Status Examination (MMSE) were selected. Baseline variables used to predict progression included sociodemographic factors, comorbidities, motor/nonmotor symptoms, polysomnography, MRI, and laboratory biomarkers in serum and CSF. RESULTS: Symptoms worsened over 4 years in PD with an annual change of 1.8 points on the MDS-UPDRS III and 0.2 points on the MMSE. Baseline predictors of worse progression of motor symptoms in PD included male sex, orthostatic blood pressure drop, diagnosis of coronary artery disease, arterial hypertension, elevated serum uric acid, and CSF neurofilament light chain. Predictors of cognitive decline in PD included previous heavy alcohol abuse, current diagnoses of diabetes mellitus, arterial hypertension, elevated periodic limb movement index during sleep, decreased hippocampal volume by MRI, higher baseline levels of uric acid, C-reactive protein, high density lipoprotein (HDL) cholesterol, and glucose levels. CONCLUSION: Cardiovascular risk factors, deregulated blood glucose, uric acid metabolism, and inflammation were identified as risk markers for faster disease progression. Our panel of risk parameters needs validation during our continuing follow-up and also in independent patient cohorts. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Biomarcadores/sangue , Disfunção Cognitiva/sangue , Progressão da Doença , Doença de Parkinson/diagnóstico , Proteína C-Reativa/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Índice de Gravidade de Doença
12.
Neuroimage ; 170: 210-221, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188918

RESUMO

Voxel-based morphometry is still mainly based on T1-weighted MRI scans. Misclassification of vessels and dura mater as gray matter has been previously reported. Goal of the present work was to evaluate the effect of multimodal segmentation methods available in SPM12, and their influence on identification of age related atrophy and lesion detection in epilepsy patients. 3D T1-, T2- and FLAIR-images of 77 healthy adults (mean age 35.8 years, 19-66 years, 45 females), 7 patients with malformation of cortical development (MCD) (mean age 28.1 years,19-40 years, 3 females), and 5 patients with left hippocampal sclerosis (LHS) (mean age 49.0 years, 25-67 years, 3 females) from a 3T scanner were evaluated. Segmentation based on T1-only, T1+T2, T1+FLAIR, T2+FLAIR, and T1+T2+FLAIR were compared in the healthy subjects. Clinical VBM results based on the different segmentation approaches for MCD and for LHS were compared. T1-only segmentation overestimated total intracranial volume by about 80ml compared to the other segmentation methods. This was due to misclassification of dura mater and vessels as GM and CSF. Significant differences were found for several anatomical regions: the occipital lobe, the basal ganglia/thalamus, the pre- and postcentral gyrus, the cerebellum, and the brainstem. None of the segmentation methods yielded completely satisfying results for the basal ganglia/thalamus and the brainstem. The best correlation with age could be found for the multimodal T1+T2+FLAIR segmentation. Highest T-scores for identification of LHS were found for T1+T2 segmentation, while highest T-scores for MCD were dependent on lesion and anatomical location. Multimodal segmentation is superior to T1-only segmentation and reduces the misclassification of dura mater and vessels as GM and CSF. Depending on the anatomical region and the pathology of interest (atrophy, lesion detection, etc.), different combinations of T1, T2 and FLAIR yield optimal results.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Epilepsias Parciais/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Idoso , Atrofia/patologia , Encéfalo/patologia , Estudos Transversais , Epilepsias Parciais/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Pessoa de Meia-Idade , Neuroimagem/normas , Adulto Jovem
13.
Brain Topogr ; 31(5): 863-874, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29766384

RESUMO

Epilepsy is one of the most prevalent neurological diseases with a high morbidity. Accumulating evidence has shown that epilepsy is an archetypical neural network disorder. Here we developed a non-invasive cortical functional connectivity analysis based on magnetoencephalography (MEG) to assess commonalities and differences in the network phenotype in different epilepsy syndromes (non-lesional/cryptogenic focal and idiopathic/genetic generalized epilepsy). Thirty-seven epilepsy patients with normal structural brain anatomy underwent a 30-min resting state MEG measurement with eyes closed. We only analyzed interictal epochs without epileptiform discharges. The imaginary part of coherency was calculated as an indicator of cortical functional connectivity in five classical frequency bands. This connectivity measure was computed between all sources on individually reconstructed cortical surfaces that were surface-aligned to a common template. In comparison to healthy controls, both focal and generalized epilepsy patients showed widespread increased functional connectivity in several frequency bands, demonstrating the potential of elevated functional connectivity as a common pathophysiological hallmark in different epilepsy types. Furthermore, the comparison between focal and generalized epilepsies revealed increased network connectivity in bilateral mesio-frontal and motor regions specifically for the generalized epilepsy patients. Our study indicated that the surface-based normalization of MEG sources of individual brains enables the comparison of imaging findings across subjects and groups on a united platform, which leads to a straightforward and effective disclosure of pathological network characteristics in epilepsy. This approach may allow for the definition of more specific markers of different epilepsy syndromes, and increased MEG-based resting-state functional connectivity seems to be a common feature in MRI-negative epilepsy syndromes.


Assuntos
Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico , Epilepsias Parciais/diagnóstico por imagem , Epilepsia Generalizada/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
14.
Epilepsia ; 58(9): 1653-1664, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745400

RESUMO

OBJECTIVE: Although the general utility of voxel-based processing of structural magnetic resonance imaging (MRI) data for detecting occult lesions in focal epilepsy is established, many differences exist among studies, and it is unclear which processing method is preferable. The aim of this study was to compare the ability of commonly used methods to detect epileptogenic lesions in magnetic resonance MRI-positive and MRI-negative patients, and to estimate their diagnostic yield. METHODS: We identified 144 presurgical focal epilepsy patients, 15 of whom had a histopathologically proven and MRI-visible focal cortical dysplasia; 129 patients were MRI negative with a clinical hypothesis of seizure origin, 27 of whom had resections. We applied four types of voxel-based morphometry (VBM), three based on T1 images (gray matter volume, gray matter concentration, junction map [JM]) and one based on normalized fluid-attenuated inversion recovery (nFSI). Specificity was derived from analysis of 50 healthy controls. RESULTS: The four maps had different sensitivity and specificity profiles. All maps showed detection rates for focal cortical dysplasia patients (MRI positive and negative) of >30% at a strict threshold of p < 0.05 (family-wise error) and >60% with a liberal threshold of p < 0.0001 (uncorrected), except for gray matter volume (14% and 27% detection rate). All maps except nFSI showed poor specificity, with high rates of false-positive findings in controls. In the MRI-negative patients, absolute detection rates were lower. A concordant nFSI finding had a significant positive odds ratio of 7.33 for a favorable postsurgical outcome in the MRI-negative group. Spatial colocalization of JM and nFSI was rare, yet showed good specificity throughout the thresholds. SIGNIFICANCE: All VBM variants had specific diagnostic properties that need to be considered for an adequate interpretation of the results. Overall, structural postprocessing can be a useful tool in presurgical diagnostics, but the low specificity of some maps has to be taken into consideration.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Encéfalo/patologia , Epilepsias Parciais/patologia , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Adulto Jovem
15.
Magn Reson Med ; 76(6): 1805-1813, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26749161

RESUMO

PURPOSE: To assess the impact of colored noise on statistics in event-related functional MRI (fMRI) (visual stimulation using checkerboards) acquired by simultaneous multislice imaging enabling repetition times (TRs) between 2.64 to 0.26 s. METHODS: T-values within the visual cortex obtained with analysis tools that assume a first-order autoregressive plus white noise process (AR(1)+w) with a fixed AR coefficient versus higher-order AR models with spatially varying AR coefficients were compared. In addition, dependency of T-values on correction of physiological noise (respiration, heart rate) was evaluated. RESULTS: Optimal statistical power was obtained for a TR of 0.33 s, but T-values as obtained by AR(1)+w models were strongly dependent on the predefined AR coefficients in fMRI with short TRs which required higher-order AR models to achieve stable statistics. Direct estimation of AR coefficients revealed the highest values within the default mode network while physiological noise had little influence on statistics in cortical structures. CONCLUSION: Colored noise in event-related fMRI obtained at short TRs originates mainly from neural sources and calls for more sophisticated correction of serial autocorrelations which cannot be achieved with standard methods relying on AR(1)+w models with globally fixed AR coefficients. Magn Reson Med 76:1805-1813, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Encéfalo/fisiologia , Potenciais Evocados Visuais/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Algoritmos , Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Análise Espaço-Temporal , Estatística como Assunto
16.
Neuroimage ; 113: 70-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797835

RESUMO

Dynamic causal modeling (DCM) is a method to non-invasively assess effective connectivity between brain regions. 'Musicogenic epilepsy' is a rare reflex epilepsy syndrome in which seizures can be elicited by musical stimuli and thus represents a unique possibility to investigate complex human brain networks and test connectivity analysis tools. We investigated effective connectivity in a case of musicogenic epilepsy using DCM for fMRI, high-density (hd-) EEG and MEG and validated results with intracranial EEG recordings. A patient with musicogenic seizures was examined using hd-EEG/fMRI and simultaneous '256-channel hd-EEG'/'whole head MEG' to characterize the epileptogenic focus and propagation effects using source analysis techniques and DCM. Results were validated with invasive EEG recordings. We recorded one seizure with hd-EEG/fMRI and four auras with hd-EEG/MEG. During the seizures, increases of activity could be observed in the right mesial temporal region as well as bilateral mesial frontal regions. Effective connectivity analysis of fMRI and hd-EEG/MEG indicated that right mesial temporal neuronal activity drives changes in the frontal areas consistently in all three modalities, which was confirmed by the results of invasive EEG recordings. Seizures thus seem to originate in the right mesial temporal lobe and propagate to mesial frontal regions. Using DCM for fMRI, hd-EEG and MEG we were able to correctly localize focus and propagation of epileptic activity and thereby characterize the underlying epileptic network in a patient with musicogenic epilepsy. The concordance between all three functional modalities validated by invasive monitoring is noteworthy, both for epileptic activity spread as well as for effective connectivity analysis in general.


Assuntos
Epilepsia Reflexa/psicologia , Imagem Multimodal/métodos , Música/psicologia , Neuroimagem/métodos , Algoritmos , Causalidade , Déjà Vu/psicologia , Eletroencefalografia , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Modelos Neurológicos , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Convulsões/fisiopatologia , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia , Adulto Jovem
17.
Brain Topogr ; 28(1): 87-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25296614

RESUMO

Electroencephalography (EEG) and magnetoencephalography (MEG) are widely used to localize brain activity and their spatial resolutions have been compared in several publications. While most clinical studies demonstrated higher accuracy of MEG source localization, simulation studies suggested a more accurate EEG than MEG localization for the same number of channels. However, studies comparing real MEG and EEG data with equivalent number of channels are scarce. We investigated 14 right-handed healthy subjects performing a motor task in MEG, high-density-(hd-) EEG and fMRI as well as a somatosensory task in MEG and hd-EEG and compared source analysis results of the evoked brain activity between modalities with different head models. Using individual head models, hd-EEG localized significantly closer to the anatomical reference point obtained by fMRI than MEG. Source analysis results were least accurate for hd-EEG based on a standard head model. Further, hd-EEG and MEG localized more medially than fMRI. Localization accuracy of electric source imaging is dependent on the head model used with more accurate results obtained with individual head models. If this is taken into account, EEG localization can be more accurate than MEG localization for the same number of channels.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Atividade Motora/fisiologia , Percepção do Tato/fisiologia , Adulto , Mapeamento Encefálico/métodos , Potenciais Evocados , Feminino , Dedos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Adulto Jovem
18.
Hum Brain Mapp ; 35(7): 3332-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25050427

RESUMO

OBJECTIVES: Idiopathic-generalized epilepsy (IGE) is currently considered to be a genetic disease without structural alterations on conventional MRI. However, voxel-based morphometry has shown abnormalities in IGE. Another method to analyze the microstructure of the brain is diffusion-tensor imaging (DTI). We sought to clarify which structural alterations are present in IGE and the most frequent subsyndrome juvenile myoclonic epilepsy (JME). EXPERIMENTAL DESIGN: We studied 25 patients (13 IGE and 12 JME) and 44 healthy controls with DTI. Fractional anisotropy (FA), mean diffusivity (MD), axial and radial diffusivity (AD/RD) were calculated and group differences were analyzed using tract-based spatial statistics (TBSS). Additionally we performed a target-based classification of TBSS results based on the Freesurfer cortical regions. PRINCIPLE OBSERVATIONS: TBSS showed widespread FA reductions as well as MD and RD increases in patients compared to controls. Affected areas were corpus callosum, corticospinal tract, superior and inferior longitudinal fasciculus and supplementary motor regions. No significant differences were found between JME and IGE subgroups. The target-based classification confirmed a particular involvement of the superior frontal gyrus (mesiofrontal area) in IGE/ME. CONCLUSIONS: IGE and JME patients showed clear microstructural alterations in several large white matter tracts. Similar findings have been reported in rodent models of IGE. Previous, region-of-interest-based DTI studies may have under-estimated the spatial extent of structural loss associated with generalized epilepsy. The comparison of clinically defined JME and IGE groups revealed no significant DTI differences in our cohort.


Assuntos
Mapeamento Encefálico , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Epilepsia Generalizada/patologia , Fibras Nervosas Mielinizadas/patologia , Adulto , Feminino , Humanos , Imageamento Tridimensional , Masculino , Epilepsia Mioclônica Juvenil/patologia , Adulto Jovem
19.
J Imaging Inform Med ; 37(1): 412-427, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343221

RESUMO

This paper presents a fully automated pipeline using a sparse convolutional autoencoder for quality control (QC) of affine registrations in large-scale T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) studies. Here, a customized 3D convolutional encoder-decoder (autoencoder) framework is proposed and the network is trained in a fully unsupervised manner. For cross-validating the proposed model, we used 1000 correctly aligned MRI images of the human connectome project young adult (HCP-YA) dataset. We proposed that the quality of the registration is proportional to the reconstruction error of the autoencoder. Further, to make this method applicable to unseen datasets, we have proposed dataset-specific optimal threshold calculation (using the reconstruction error) from ROC analysis that requires a subset of the correctly aligned and artificially generated misalignments specific to that dataset. The calculated optimum threshold is used for testing the quality of remaining affine registrations from the corresponding datasets. The proposed framework was tested on four unseen datasets from autism brain imaging data exchange (ABIDE I, 215 subjects), information eXtraction from images (IXI, 577 subjects), Open Access Series of Imaging Studies (OASIS4, 646 subjects), and "Food and Brain" study (77 subjects). The framework has achieved excellent performance for T1w and T2w affine registrations with an accuracy of 100% for HCP-YA. Further, we evaluated the generality of the model on four unseen datasets and obtained accuracies of 81.81% for ABIDE I (only T1w), 93.45% (T1w) and 81.75% (T2w) for OASIS4, and 92.59% for "Food and Brain" study (only T1w) and in the range 88-97% for IXI (for both T1w and T2w and stratified concerning scanner vendor and magnetic field strengths). Moreover, the real failures from "Food and Brain" and OASIS4 datasets were detected with sensitivities of 100% and 80% for T1w and T2w, respectively. In addition, AUCs of > 0.88 in all scenarios were obtained during threshold calculation on the four test sets.

20.
Seizure ; 117: 183-192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452614

RESUMO

For the one third of people with epilepsy whose seizures are not controlled with medications, targeting the seizure focus with neurostimulation can be an effective therapeutic strategy. In this focused review, we summarize a discussion of targeted neurostimulation modalities during a workshop held in Frankfurt, Germany in September 2023. Topics covered include: available devices for seizure focus stimulation; alternating current (AC) and direct current (DC) stimulation to reduce focal cortical excitability; modeling approaches to simulate DC stimulation; reconciling the efficacy of focal stimulation with the network theory of epilepsy; and the emerging concept of 'neurostimulation zones,' which are defined as cortical regions where focal stimulation is most effective for reducing seizures and which may or may not directly involve the seizure onset zone. By combining experimental data, modeling results, and clinical outcome analysis, rational selection of target regions and stimulation parameters is increasingly feasible, paving the way for a broader use of neurostimulation for epilepsy in the future.


Assuntos
Epilepsia , Humanos , Epilepsia/terapia , Terapia por Estimulação Elétrica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA