Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(7): 3969-3984, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36066436

RESUMO

Assessment of brain function with functional near-infrared spectroscopy (fNIRS) is limited to the outer regions of the cortex. Previously, we demonstrated the feasibility of inferring activity in subcortical "deep brain" regions using cortical functional magnetic resonance imaging (fMRI) and fNIRS activity in healthy adults. Access to subcortical regions subserving emotion and arousal using affordable and portable fNIRS is likely to be transformative for clinical diagnostic and treatment planning. Here, we validate the feasibility of inferring activity in subcortical regions that are central to the pathophysiology of posttraumatic stress disorder (PTSD; i.e. amygdala and hippocampus) using cortical fMRI and simulated fNIRS activity in a sample of adolescents diagnosed with PTSD (N = 20, mean age = 15.3 ± 1.9 years) and age-matched healthy controls (N = 20, mean age = 14.5 ± 2.0 years) as they performed a facial expression task. We tested different prediction models, including linear regression, a multilayer perceptron neural network, and a k-nearest neighbors model. Inference of subcortical fMRI activity with cortical fMRI showed high prediction performance for the amygdala (r > 0.91) and hippocampus (r > 0.95) in both groups. Using fNIRS simulated data, relatively high prediction performance for deep brain regions was maintained in healthy controls (r > 0.79), as well as in youths with PTSD (r > 0.75). The linear regression and neural network models provided the best predictions.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Adulto , Adolescente , Humanos , Criança , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Emoções , Imageamento por Ressonância Magnética , Biomarcadores
2.
Artigo em Inglês | MEDLINE | ID: mdl-38904702

RESUMO

BACKGROUND: Klinefelter syndrome (KS), also referred to as XXY syndrome, is a significant but inadequately studied risk factor for neuropsychiatric disability. Whether alterations in functional brain connectivity or pubertal delays are associated with aberrant cognitive-behavioral outcomes in individuals with KS is largely unknown. In this observational study, we investigated KS-related alterations in the resting-state brain network, testosterone level, and cognitive-behavioral impairment in adolescents with Klinefelter syndrome. METHODS: We recruited 46 boys with KS, ages 8 to 17 years, and 51 age-matched typically developing (TD) boys. All participants underwent resting-state functional magnetic resonance imaging scans, pubertal, and cognitive-behavioral assessments. Resting-state functional connectivity and regional brain activity of the participants were assessed. RESULTS: We found widespread alterations in global functional connectivity among the inferior frontal gyrus, temporal-parietal area, and hippocampus in boys with KS. Aberrant regional activities, including enhanced fALFF in the motor area and reduced ReHo in the caudate, were also found in the KS group compared to the TD children. Further, using machine learning methods, brain network alterations in these regions accurately differentiated boys with KS from TD controls. Finally, we showed that the alterations of brain network properties not only effectively predict cognitive-behavioral impairment in boys with KS, but also appear to mediate the association between total testosterone level and language ability, a cognitive domain at particular risk for dysfunction in this condition. CONCLUSION: Our results offer an informatic neurobiological foundation for understanding cognitive-behavioral impairments in individuals with KS and contribute to our understanding of the interplay between pubertal status, brain function, and cognitive-behavioral outcome in this population.

3.
Hum Brain Mapp ; 44(10): 4028-4039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126641

RESUMO

Turner syndrome (TS) is a common sex chromosome aneuploidy in females associated with various physical, cognitive, and socio-emotional phenotypes. However, few studies have examined TS-associated alterations in the development of cortical gray matter volume and the two components that comprise this measure-surface area and thickness. Moreover, the longitudinal direct (i.e., genetic) and indirect (i.e., hormonal) effects of X-monosomy on the brain are unclear. Brain structure was assessed in 61 girls with TS (11.3 ± 2.8 years) and 55 typically developing girls (10.8 ± 2.3 years) for up to 4 timepoints. Surface-based analyses of cortical gray matter volume, thickness, and surface area were conducted to examine the direct effects of X-monosomy present before pubertal onset and indirect hormonal effects of estrogen deficiency/X-monosomy emerging after pubertal onset. Longitudinal analyses revealed that, whereas typically developing girls exhibited normative declines in gray matter structure during adolescence, this pattern was reduced or inverted in TS. Further, girls with TS demonstrated smaller total surface area and larger average cortical thickness overall. Regionally, the TS group exhibited decreased volume and surface area in the pericalcarine, postcentral, and parietal regions relative to typically developing girls, as well as larger volume in the caudate, amygdala, and temporal lobe regions and increased thickness in parietal and temporal regions. Surface area alterations were predominant by age 8, while maturational differences in thickness emerged by age 10 or later. Taken together, these results suggest the involvement of both direct and indirect effects of X-chromosome haploinsufficiency on brain development in TS.


Assuntos
Síndrome de Turner , Humanos , Feminino , Síndrome de Turner/diagnóstico por imagem , Síndrome de Turner/psicologia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Monossomia
4.
J Neurosci Res ; 101(12): 1803-1813, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37654210

RESUMO

Gender-based microaggressions have been associated with persistent disparities between women and men in academia. Little is known about the neural mechanisms underlying those often subtle and unintentional yet detrimental behaviors. Here, we assessed the neural responses to gender-based microaggressions in 28 early career faculty in medicine (N = 16 female, N = 12 male sex) using fMRI. Participants watched 33 videos of situations demonstrating gender-based microaggressions and control situations in academic medicine. Video topics had been previously identified through real-life anecdotes about microaggression from women faculty and were scripted and reenacted using professional actors. Primary voxel-wise analyses comparing group differences in activation elucidated a significant group by condition interaction in a right-lateralized cluster across the frontal (inferior and middle frontal gyri, frontal pole, precentral gyrus, postcentral gyrus) and parietal lobes (supramarginal gyrus, angular gyrus). Whereas women faculty exhibited reduced activation in these regions during the microaggression relative to the control condition, the opposite was true for men. Posthoc analyses showed that these patterns were significantly associated with the degree to which participants reported feeling judged for their gender in academic medicine. Lastly, secondary exploratory ROI analyses showed significant between-group differences in the right dorsolateral prefrontal cortex and inferior frontal gyrus. Women activated these two regions less in the microaggression condition compared to the control condition, whereas men did not. These findings indicate that the observation of gender-based microaggressions results in a specific pattern of neural reactivity in women early career faculty.


Assuntos
Encéfalo , Microagressão , Humanos , Masculino , Feminino , Encéfalo/diagnóstico por imagem , Emoções/fisiologia , Córtex Pré-Frontal , Lobo Frontal
5.
Pediatr Diabetes ; 23(8): 1674-1686, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36131363

RESUMO

OBJECTIVE: Both diabetes and obesity can affect the brain, yet their impact is not well characterized in children with type 2 (T2) diabetes and obesity. This pilot study aims to explore differences in brain function and cognition in adolescents with T2 diabetes and obesity and nondiabetic controls with obesity and lean controls. RESEARCH DESIGN AND METHODS: Participants were 12-17 years old (5 T2 diabetes with obesity [mean HgbA1C 10.9%], 6 nondiabetic controls with obesity and 10 lean controls). Functional MRI (FMRI) during hyperglycemic/euglycemic clamps was performed in the T2 diabetes group. RESULTS: When children with obesity, with and without diabetes, were grouped (mean BMI 98.8%), cognitive scores were lower than lean controls (BMI 58.4%) on verbal, full scale, and performance IQ, visual-spatial and executive function tests. Lower scores correlated with adiposity and insulin resistance but not HgbA1C. No significant brain activation differences during task based and resting state FMRI were noted between children with obesity (with or without diabetes) and lean controls, but a notable effect size for the visual-spatial working memory task and resting state was observed. CONCLUSIONS: In conclusion, our pilot study suggests that obesity, insulin resistance, and dysglycemia may contribute to relatively poorer cognitive function in adolescents with T2 diabetes and obesity. Further studies with larger sample size are needed to assess if cognitive decline in children with obesity, with and without T2 diabetes, can be prevented or reversed.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Criança , Humanos , Adolescente , Projetos Piloto , Encéfalo , Obesidade , Memória de Curto Prazo
6.
Dev Psychopathol ; 34(3): 957-968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33745487

RESUMO

Childhood adversity and anxiety have been associated with increased risk for internalizing disorders later in life and with a range of brain structural abnormalities. However, few studies have examined the link between harsh parenting practices and brain anatomy, outside of severe maltreatment or psychopathology. Moreover, to our knowledge, there has been no research on parenting and subclinical anxiety symptoms which remain persistent over time during childhood (i.e., between 2.5 and 9 years old). Here, we examined data in 94 youth, divided into four cells based on their levels of coercive parenting (high / low) and of anxiety (high / low) between 2.5 and 9 years old. Anatomical images were analyzed using voxel-based morphometry (VBM) and FreeSurfer. Smaller gray matter volumes in the prefrontal cortex regions and in the amygdala were observed in youth with high versus low levels of harsh parenting over time. In addition, we observed significant interaction effects between parenting practices and subclinical anxiety symptoms in rostral anterior cingulate cortical thickness and in amygdala volume. These youth should be followed further in time to identify which youth will or will not go on to develop an anxiety disorder, and to understand factors associated with the development of sustained anxiety psychopathology.


Assuntos
Imageamento por Ressonância Magnética , Poder Familiar , Adolescente , Tonsila do Cerebelo/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Criança , Pré-Escolar , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia
7.
Cereb Cortex ; 30(7): 4269-4280, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32215605

RESUMO

Early life stress (ELS) may accelerate frontoamygdala development related to socioemotional processing, serving as a potential source of resilience. Whether this circuit is associated with other proposed measures of accelerated development is unknown. In a sample of young adolescents, we examined the relations among ELS, frontoamygdala circuitry during viewing of emotional faces, cellular aging as measured by telomere shortening, and pubertal tempo. We found that greater cumulative severity of ELS was associated with stronger negative coupling between bilateral centromedial amygdala and the ventromedial prefrontal cortex, a pattern that may reflect more mature connectivity. More negative frontoamygdala coupling (for distinct amygdala subdivisions) was associated with slower telomere shortening and pubertal tempo over 2 years. These potentially protective associations of negative frontoamygdala connectivity were most pronounced in adolescents who had been exposed to higher ELS. Our findings provide support for the formulation that ELS accelerates maturation of frontoamygdala connectivity and provide novel evidence that this neural circuitry confers protection against accelerated biological aging, particularly for adolescents who have experienced higher ELS. Although negative frontoamygdala connectivity may be an adaptation to ELS, frontoamygdala connectivity, cellular aging, and pubertal tempo do not appear to be measures of the same developmental process.


Assuntos
Experiências Adversas da Infância , Envelhecimento/metabolismo , Tonsila do Cerebelo/diagnóstico por imagem , Senescência Celular , Córtex Pré-Frontal/diagnóstico por imagem , Adolescente , Envelhecimento/fisiologia , Envelhecimento/psicologia , Tonsila do Cerebelo/fisiopatologia , Criança , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Neuroimagem Funcional , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Puberdade , Encurtamento do Telômero
8.
Pediatr Diabetes ; 21(3): 515-523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003523

RESUMO

When considered as a group, children with type 1 diabetes have subtle cognitive deficits relative to neurotypical controls. However, the neural correlates of these differences remain poorly understood. Using functional near-infrared spectroscopy (fNIRS), we investigated the brain functional activations of young adolescents (19 individuals with type 1 diabetes, 18 healthy controls, ages 8-16 years) during a Go/No-Go response inhibition task. Both cohorts had the same performance on the task, but the individuals with type 1 diabetes subjects had higher activations in a frontal-parietal network including the bilateral supramarginal gyri and bilateral rostrolateral prefrontal cortices. The activations in these regions were positively correlated with fewer parent-reported conduct problems (ie, lower Conduct Problem scores) on the Behavioral Assessment System for Children, Second Edition. Lower Conduct Problem scores are characteristic of less rule-breaking behavior suggesting a link between this brain network and better self-control. These findings are consistent with a large functional magnetic resonance imaging (fMRI) study of children with type 1 diabetes using completely different participants. Perhaps surprisingly, the between-group activation results from fNIRS were statistically stronger than the results using fMRI. This pilot study is the first fNIRS investigation of executive function for individuals with type 1 diabetes. The results suggest that fNIRS is a promising functional neuroimaging resource for detecting the brain correlates of behavior in the pediatric clinic.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Neuroimagem Funcional/métodos , Lobo Parietal/diagnóstico por imagem , Adolescente , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/psicologia , Função Executiva/fisiologia , Feminino , Lobo Frontal/fisiopatologia , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Projetos Piloto , Espectroscopia de Luz Próxima ao Infravermelho/métodos
9.
PLoS Med ; 16(12): e1002979, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815939

RESUMO

BACKGROUND: Optimal glycemic control is particularly difficult to achieve in children and adolescents with type 1 diabetes (T1D), yet the influence of dysglycemia on the developing brain remains poorly understood. METHODS AND FINDINGS: Using a large multi-site study framework, we investigated activation patterns using functional magnetic resonance imaging (fMRI) in 93 children with T1D (mean age 11.5 ± 1.8 years; 45.2% female) and 57 non-diabetic (control) children (mean age 11.8 ± 1.5 years; 50.9% female) as they performed an executive function paradigm, the go/no-go task. Children underwent scanning and cognitive and clinical assessment at 1 of 5 different sites. Group differences in activation occurring during the contrast of "no-go > go" were examined while controlling for age, sex, and scan site. Results indicated that, despite equivalent task performance between the 2 groups, children with T1D exhibited increased activation in executive control regions (e.g., dorsolateral prefrontal and supramarginal gyri; p = 0.010) and reduced suppression of activation in the posterior node of the default mode network (DMN; p = 0.006). Secondary analyses indicated associations between activation patterns and behavior and clinical disease course. Greater hyperactivation in executive control regions in the T1D group was correlated with improved task performance (as indexed by shorter response times to correct "go" trials; r = -0.36, 95% CI -0.53 to -0.16, p < 0.001) and with better parent-reported measures of executive functioning (r values < -0.29, 95% CIs -0.47 to -0.08, p-values < 0.007). Increased deficits in deactivation of the posterior DMN in the T1D group were correlated with an earlier age of T1D onset (r = -0.22, 95% CI -0.41 to -0.02, p = 0.033). Finally, exploratory analyses indicated that among children with T1D (but not control children), more severe impairments in deactivation of the DMN were associated with greater increases in hyperactivation of executive control regions (T1D: r = 0.284, 95% CI 0.08 to 0.46, p = 0.006; control: r = 0.108, 95% CI -0.16 to 0.36, p = 0.423). A limitation to this study involves glycemic effects on brain function; because blood glucose was not clamped prior to or during scanning, future studies are needed to assess the influence of acute versus chronic dysglycemia on our reported findings. In addition, the mechanisms underlying T1D-associated alterations in activation are unknown. CONCLUSIONS: These data indicate that increased recruitment of executive control areas in pediatric T1D may act to offset diabetes-related impairments in the DMN, ultimately facilitating cognitive and behavioral performance levels that are equivalent to that of non-diabetic controls. Future studies that examine whether these patterns change as a function of improved glycemic control are warranted.


Assuntos
Glicemia/metabolismo , Encéfalo/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Função Executiva/fisiologia , Adolescente , Criança , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Testes Neuropsicológicos
10.
Pediatr Diabetes ; 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29675980

RESUMO

The extant literature finds that children with type 1 diabetes mellitus (T1D) experience mild cognitive alterations compared to healthy age-matched controls. The neural basis of these cognitive differences is unclear but may relate in part to the effects of dysglycemia on the developing brain. We investigated longitudinal changes in hippocampus volume in young children with early-onset T1D. Structural magnetic resonance imaging data were acquired from 142 children with T1D and 65 age-matched control subjects (4-10 years of age at study entry) at 2 time points, 18 months apart. The effects of diabetes and glycemic exposure on hippocampal volume and growth were examined. Results indicated that although longitudinal hippocampus growth did not differ between children with T1D and healthy control children, slower growth of the hippocampus was associated with both increased exposure to hyperglycemia (interval HbA1c) and greater glycemic variability (MAGE) in T1D. These observations indicate that the current practice of tolerating some hyperglycemia to minimize the risk of hypoglycemia in young children with T1D may not be optimal for the developing brain. Efforts that continue to assess the factors influencing neural and cognitive development in children with T1D will be critical in minimizing the deleterious effects of diabetes.

11.
Hum Brain Mapp ; 37(4): 1593-601, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26819071

RESUMO

OBJECTIVE: Sex differences in the manifestation of psychiatric disorders, including anxiety disorders, are among the most prominent findings in psychiatry. The study of Turner syndrome (TS), caused by X-monosomy, has the potential to reveal mechanisms that underline male/female differences in neuropsychiatric disorders. The amygdala has been implicated in numerous neuropsychiatric disorders. Previous studies suggest an effect of TS on amygdala volume as well as on amygdala-related behaviors such as anxiety. Our objective is to investigate the amygdala shape in TS. Specifically, we tested whether amygdala enlargements in TS are localized to specific nuclei implicated in anxiety, such as the basomedial nucleus. EXPERIMENTAL DESIGN: We use a surface-based analytical modeling approach to contrast 41 pre-estrogen treatment girls with TS (mean age 8.6 ± 2.4) with 34 age-and sex-matched typically developing (TD) controls (mean age 8.0 ± 2.8). Anxiety symptoms were assessed using the Revised Children's Manifest Anxiety Scale - 2 (RCMAS-2) in both groups. PRINCIPAL OBSERVATIONS: TS was associated with anomalous enlargement of the amygdala. Surface-based modeling revealed shape differences (increased radial-distances) in bilateral basal and basomedial nuclei within the basolateral complex. RCMAS-2 Total Anxiety t-score was significantly higher in participants with TS compared with TD controls (P = 0.012). CONCLUSIONS: Group differences in global amygdala volumes were driven by local morphological increases in areas that are critically involved in face emotion processing and anxiety. In the context of increased amygdala volumes in TS, our results also showed increased worry and social anxiety in young girls with TS compared with TD.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Caracteres Sexuais , Síndrome de Turner/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino , Tamanho do Órgão
12.
Dev Neurosci ; 38(2): 115-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27198667

RESUMO

BACKGROUND: A growing body of research has demonstrated that having a mother with a history of major depressive disorder (MDD) is one of the strongest predictors of depression in adolescent offspring. Few studies, however, have assessed neural markers of this increased risk for depression, or examined whether risk-related anomalies in adolescents at maternal risk for depression are related to neural abnormalities in their depressed mothers. We addressed these questions by examining concordance in brain structure in two groups of participants: mothers with a history of depression and their never-depressed daughters, and never-depressed mothers and their never-depressed daughters. METHOD: We scanned mothers with (remitted; RMD) and without (control; CTL) a history of recurrent episodes of depression and their never-depressed daughters, computed cortical gray matter thickness, and tested whether mothers' thickness predicted daughters' thickness. RESULTS: Both RMD mothers and their high-risk daughters exhibited focal areas of thinner cortical gray matter compared with their CTL/low-risk counterparts. Importantly, the extent of thickness anomalies in RMD mothers predicted analogous abnormalities in their daughters; this pattern was not present in CTL/low-risk dyads. CONCLUSIONS: We identified neuroanatomical risk factors that may underlie the intergenerational transmission of risk for MDD. Our findings suggest that there is concordance in brain structure in dyads that is affected by maternal depression, and that the location, direction, and extent of neural anomalies in high-risk offspring mirror those of their recurrent depressed mothers.


Assuntos
Encéfalo/patologia , Depressão/patologia , Transtorno Depressivo Maior/patologia , Mães , Núcleo Familiar , Adolescente , Encéfalo/fisiopatologia , Criança , Feminino , Humanos , Masculino , Recidiva
13.
J Clin Child Adolesc Psychol ; 45(1): 21-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25635920

RESUMO

Adults diagnosed with major depressive disorder (MDD) have been found to be characterized by selective attention to negative material and by impairments in their ability to disengage from, or inhibit the processing of, negative stimuli. Altered functioning in the frontal executive control network has been posited to underlie these deficits in cognitive functioning. We know little, however, about the neural underpinnings of inhibitory difficulties in depressed adolescents. We used functional magnetic resonance imaging in 18 adolescents diagnosed with MDD and 15 age- and gender-matched healthy controls (CTLs) while they performed a modified affective Go/No-Go task that was designed to measure inhibitory control in the presence of an emotional distractor. Participants were presented with either a happy or a sad face, followed by a go or a no-go target to which they either made or inhibited a motor response. A group (MDD, CTL) by valence (happy, sad) by condition (go, no-go) analysis of variance indicated that MDD adolescents showed attenuated BOLD response in the right dorsolateral prefrontal cortex (DLPFC) and in the occipital cortex bilaterally, to no-go targets that followed a sad, but not a happy, face. Adolescents diagnosed with MDD showed anomalous recruitment of prefrontal control regions during inhibition trials, suggesting depression-associated disruption in neural underpinnings of the inhibition of emotional distractors. Given that the DLPFC is associated with the maintenance of goal-relevant information, it is likely that sad faces differentially capture attention in adolescents with MDD and interfere with task demands requiring inhibition.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Estimulação Luminosa/métodos , Córtex Pré-Frontal/fisiopatologia , Adolescente , Adulto , Atenção/fisiologia , Estudos de Casos e Controles , Emoções/fisiologia , Função Executiva , Feminino , Humanos , Inibição Psicológica , Imageamento por Ressonância Magnética , Masculino
14.
Eur J Neurosci ; 41(6): 748-59, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25581560

RESUMO

Interaction between the basal ganglia and the cortex plays a critical role in a range of behaviors. Output from the basal ganglia to the cortex is thought to be relayed through the thalamus, but an intriguing alternative is that the basal ganglia may directly project to and communicate with the cortex. We explored an efferent projection from the globus pallidus externa (GPe), a key hub in the basal ganglia system, to the cortex of rats and mice. Anterograde and retrograde tracing revealed projections to the frontal premotor cortex, especially the deep projecting layers, originating from GPe neurons that receive axonal inputs from the dorsal striatum. Cre-dependent anterograde tracing in Vgat-ires-cre mice confirmed that the pallidocortical projection is GABAergic, and in vitro optogenetic stimulation in the cortex of these projections produced a fast inhibitory postsynaptic current in targeted cells that was abolished by bicuculline. The pallidocortical projections targeted GABAergic interneurons and, to a lesser extent, pyramidal neurons. This GABAergic pallidocortical pathway directly links the basal ganglia and cortex, and may play a key role in behavior and cognition in normal and disease states.


Assuntos
Neurônios GABAérgicos/citologia , Globo Pálido/citologia , Córtex Pré-Frontal/citologia , Animais , Feminino , Neurônios GABAérgicos/fisiologia , Globo Pálido/fisiologia , Masculino , Camundongos , Neostriado/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley
15.
Cogn Affect Behav Neurosci ; 14(2): 818-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24146315

RESUMO

Major depressive disorder (MDD) is a recurrent mood disorder. The high rate of recurrence of MDD suggests the presence of stable vulnerability factors that place individuals with a history of major depression at an increased risk for the onset of another episode. Previous research has linked the remitted state, and therefore increased vulnerability for depressive relapse, with difficulties in the use of pleasant autobiographical memories to repair sad mood. In the present study, we examined the neural correlates of these difficulties. Groups of 16 currently euthymic, remitted depressed individuals and 16 healthy (control) women underwent functional magnetic resonance imaging (fMRI) during sad mood induction and during recovery from a sad mood state through recall of mood-incongruent positive autobiographical memories. Sad mood was induced in participants by using film clips; participants then recalled positive autobiographical memories, a procedure previously shown to repair negative affect. During both the sad mood induction and automatic mood regulation, control participants exhibited activation in the left ventrolateral prefrontal cortex (vlPFC) and cuneus; in contrast, remitted participants exhibited a decrease in activation in these regions. Furthermore, exploratory analyses revealed that reduced activation levels during mood regulation predicted a worsening of depressive symptoms at a 20-month follow-up assessment. These findings highlight a dynamic role of the vlPFC and cuneus in the experience and modulation of emotional states and suggest that functional anomalies of these brain regions are associated with a history of, and vulnerability to, depression.


Assuntos
Encéfalo/irrigação sanguínea , Transtorno Depressivo Maior , Emoções/fisiologia , Imageamento por Ressonância Magnética , Rememoração Mental/fisiologia , Psicoterapia/métodos , Adulto , Análise de Variância , Encéfalo/efeitos dos fármacos , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Maior/reabilitação , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Memória Episódica , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxigênio/sangue , Escalas de Graduação Psiquiátrica , Resultado do Tratamento
16.
Dev Psychopathol ; 26(4 Pt 2): 1401-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25422969

RESUMO

Having a depressed mother is one of the strongest predictors of depression in adolescence. We investigated whether the stress of having a mother with recurrent depression is associated with dysfunction in adolescents in the HPA axis and whether the tendency to use involuntary coping strategies in dealing with this stress is associated with exacerbation of dysfunction in this system. Sixty-four never-disordered daughters of mothers with recurrent depression (high risk) and 64 never-disordered daughters of never-disordered mothers (low risk) completed diurnal cortisol and stress assessments. High-risk girls secreted more diurnal cortisol than did low-risk girls. Whereas low-risk girls secreted higher levels of cortisol with increasing stress associated with having a depressed mother, no such relation was present in high-risk girls. Finally, in contrast to low-risk girls, girls at familial risk for depression who more frequently used involuntary versus voluntary coping exhibited the greatest elevations in diurnal cortisol. These findings indicate that a tendency to utilize involuntary, as opposed to voluntary, coping strategies in dealing with stress involving maternal depression exacerbates already high levels of cortisol in youth at risk for depression. Future research that examines whether interventions aimed at increasing the use of voluntary coping strategies normalizes HPA axis dysfunction is of interest.


Assuntos
Adaptação Psicológica/fisiologia , Filho de Pais com Deficiência/psicologia , Transtorno Depressivo Maior/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Mães/psicologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Estresse Psicológico/fisiopatologia , Adolescente , Criança , Feminino , Predisposição Genética para Doença , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Risco , Estresse Psicológico/metabolismo
17.
J Dev Behav Pediatr ; 45(4): e365-e371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990140

RESUMO

OBJECTIVE: Klinefelter syndrome (KS) is the most common sex-chromosome aneuploidy (47,XXY), affecting 1 in 500 male participants. The phenotype of male participants with KS includes both physical features, such as tall stature and testicular insufficiency, and behavioral alterations, including difficulties in social functioning, anxiety, and depression. Studies examining underlying neural alterations associated with the behavioral phenotype, however, are sparse. We aimed to address this gap in knowledge using functional magnetic resonance imaging in conjunction with an emotion processing paradigm. METHOD: Functional magnetic resonance imaging was conducted on 38 children and adolescents with KS ( Mage = 12.85, SD = 2.45) and 47 typical developing (control) boys ( Mage = 12.04, SD = 1.82) as they completed a facial emotion processing task. Group differences in activation occurring during the processing of angry versus neutral faces were examined while controlling for age. RESULTS: The results indicated that relative to typically developing boys, boys with KS exhibited anomalous increases in activation of frontal, temporal, and occipital cortices. Within the KS group, secondary analyses indicated that greater activation in these regions was associated with more internalizing symptoms (e.g., anxiety, depression, withdrawn behaviors) and greater social impairments (e.g., social cognition, social communication, social motivation, social communication and interaction, functional communication). CONCLUSION: The findings from this study indicate a possible neural correlation for difficulties in social and emotional function in KS and add to a growing body of research aimed at increasing our understanding of neural biomarkers in this condition. Future studies that examine the influence of testosterone-replacement therapy on these differences are warranted.


Assuntos
Reconhecimento Facial , Síndrome de Klinefelter , Imageamento por Ressonância Magnética , Humanos , Síndrome de Klinefelter/fisiopatologia , Masculino , Adolescente , Criança , Reconhecimento Facial/fisiologia , Emoções/fisiologia , Expressão Facial , Percepção Social , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem
18.
Psychol Sci ; 24(3): 334-44, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23334445

RESUMO

Recurrent uncontrollable negative thoughts are a hallmark of depressive episodes. Deficits in cognitive control have been proposed to underlie this debilitating aspect of depression. Here, we used functional neuroimaging during an emotional working memory (WM) task to elucidate the neural correlates of these difficulties in cognitive control. In a WM manipulation involving depressed participants, the dorsal anterior cingulate and parietal and bilateral insular cortices were activated significantly more when negative words were removed from WM than when they were maintained in WM; in contrast, nondepressed participants exhibited stronger neural activations in these regions for positive than for negative material. These findings implicate anomalous activation of components of the task-positive network, known to be modulated by cognitive effort, in depression-associated difficulties in expelling negative material from WM. Future studies should examine the association between these aberrations and the maintenance of depressive symptoms.


Assuntos
Córtex Cerebral/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Emoções/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiopatologia , Adulto , Função Executiva/fisiologia , Feminino , Neuroimagem Funcional/instrumentação , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
J Dev Behav Pediatr ; 44(7): e476-e485, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696031

RESUMO

OBJECTIVE: Klinefelter syndrome (KS; 47, XXY), the most common sex chromosome aneuploidy in males, is characterized by testicular failure and testosterone deficiency as well as a variety of cognitive, social, and emotional challenges. In the current study, we aimed to clarify the cognitive-behavioral profile of peripubertal boys with KS using measures of cognition, academic achievement, adaptive behavior, and quality of life. METHOD: We compared 47 boys with KS (7-16 years of age) with 55 performance IQ-matched boys without KS on measures of cognition (WISC-V), executive function (BRIEF-2), academic achievement (KTEA-3), adaptive behavior (Vineland-3), and quality of life (PROMIS). In exploratory analyses, we examined associations among these measures and potential associations with pubertal metrics. RESULTS: Boys with KS demonstrated a significantly different profile of cognition, behavioral ratings of executive function, academic achievement, adaptive behavior, and quality of life compared with their typically developing peers, with, on average, lower functioning. The groups showed significantly different correlations between cognition and aspects of quality of life. No associations were observed between behavior and pubertal development. CONCLUSION: Taken together, these findings indicated that boys with KS are at increased risk for cognitive difficulties, which may affect academic achievement, adaptive behavior, and quality of life. Although initial exploratory analyses indicated that the magnitude of these alterations was not correlated with severity of testicular failure, longitudinal analyses currently being conducted by our group may help clarify the trajectory of these difficulties through the pubertal transition and testosterone replacement.


Assuntos
Sucesso Acadêmico , Síndrome de Klinefelter , Masculino , Adolescente , Criança , Humanos , Qualidade de Vida , Cognição , Adaptação Psicológica , Testosterona
20.
J Clin Endocrinol Metab ; 109(1): e88-e95, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37595261

RESUMO

CONTEXT: Executive dysfunction is a well-recognized component of the cognitive phenotype of Klinefelter syndrome (KS), yet the neural basis of KS-associated cognitive weaknesses, and their association with testicular failure is unknown. OBJECTIVE: We investigated executive function, brain activation, and pubertal development in adolescents with and without KS. METHODS: Forty-three adolescents with KS (mean age 12.3 ± 2.3 years) and 41 typically developing boys (mean age 11.9 ± 1.8 years) underwent pubertal evaluation, behavioral assessment, and completed functional magnetic resonance imaging (fMRI) as they performed an executive function task, the go/no-go task. Group differences in activation were examined. Associations among activation, executive function, and pubertal development measures were tested in secondary analyses. RESULTS: Boys with KS exhibited reduced executive function, as well as lower activation in brain regions subserving executive function, including the inferior frontal gyrus, anterior insula, dorsal anterior cingulate cortex, and caudate nucleus. Secondary analyses indicated that the magnitude of activation differences in boys with KS was associated with severity of pubertal developmental delay, as indexed by lower testosterone (t(36) = 2.285; P = .028) and lower testes volume (t(36) = 2.238; P = .031). Greater parent-reported attention difficulties were additionally associated with lower testicular volume (t(36) = -2.028; P = .050). CONCLUSION: These findings indicate a neural basis for executive dysfunction in KS and suggest alterations in pubertal development may contribute to increased severity of this cognitive weakness. Future studies that examine whether these patterns change with testosterone replacement therapy are warranted.


Assuntos
Disfunção Cognitiva , Síndrome de Klinefelter , Masculino , Adolescente , Humanos , Criança , Síndrome de Klinefelter/genética , Encéfalo/patologia , Testosterona , Função Executiva , Disfunção Cognitiva/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA