Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol ; 255(2): 120-131, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34155630

RESUMO

Despite numerous unsuccessful clinical trials for anti-complement drugs to treat age-related macular degeneration (AMD), the complement system has not been fully explored as a target to stop drusen growth in patients with dry AMD. We propose that the resilient autoactivation of C3 by hydrolysis of its internal thioester (tick-over), which cannot be prevented by existing drugs, plays a critical role in the formation of drusenoid deposits underneath the retinal pigment epithelium (RPE). We have combined gene editing tools with stem cell technology to generate cell-based models that allow the role of the tick-over in sub-RPE deposit formation to be studied. The results demonstrate that structurally or genetically driven pathological events affecting the RPE and Bruch's membrane can lead to dysregulation of the tick-over, which is sufficient to stimulate the formation of sub-RPE deposits. This can be prevented with therapies that downregulate C3 expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Complemento C3/metabolismo , Via Alternativa do Complemento/fisiologia , Degeneração Macular , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Degeneração Macular/patologia
2.
Mol Cell ; 43(2): 285-98, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777817

RESUMO

The histone H3K27 methyltransferase EZH2 plays an important role in oncogenesis, by mechanisms that are incompletely understood. Here, we show that the JmjC domain histone H3 demethylase NDY1 synergizes with EZH2 to silence the EZH2 inhibitor miR-101. NDY1 and EZH2 repress miR-101 by binding its promoter in concert, via a process triggered by upregulation of NDY1. Whereas EZH2 binding depends on NDY1, the latter binds independently of EZH2. However, both are required to repress transcription. NDY1 and EZH2 acting in concert upregulate EZH2 and stabilize the repression of miR-101 and its outcome. NDY1 is induced by FGF-2 via CREB phosphorylation and activation, downstream of DYRK1A, and mediates the FGF-2 and EZH2 effects on cell proliferation, migration, and angiogenesis. The FGF-2-NDY1/EZH2-miR-101-EZH2 axis described here was found to be active in bladder cancer. These data delineate an oncogenic pathway that functionally links FGF-2 with EZH2 via NDY1 and miR-101.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , MicroRNAs/metabolismo , Neovascularização Fisiológica , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Complexo Repressor Polycomb 2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Pharmaceutics ; 15(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678915

RESUMO

Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.

4.
Biochim Biophys Acta ; 1802(6): 497-508, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20193760

RESUMO

Mutations in human SCO2 gene, encoding the mitochondrial inner membrane Sco2 protein, have been found to be responsible for fatal infantile cardioencephalomyopathy and cytochrome c oxidase (COX) deficiency. One potentially fruitful therapeutic approach for this mitochondrial disorder should be considered the production of human recombinant full length L-Sco2 protein and its deliberate transduction into the mitochondria. Recombinant L-Sco2 protein, fused with TAT, a Protein Transduction Domain (PTD), was produced in bacteria and purified from inclusion bodies (IBs). Following solubilisation with l-arginine, this fusion L-Sco2 protein was transduced in cultured mammalian cells of different origin (U-87 MG, T24, K-562, and patient's primary fibroblasts) and assessed for stability, transduction into mitochondria, processing and impact on recovery of COX activity. Our results indicate that: a) l-Arg solution was effective in solubilising recombinant fusion L-Sco2 protein, derived from IBs; b) fusion L-Sco2 protein was delivered successfully via a time- and concentration-dependent process into the mitochondria of human U-87 MG and T24 cells; c) fusion L-Sco2 protein was also transduced in human K-562 cells, transiently depleted of SCO2 transcripts and thus COX deficient; transduction of this fusion protein led to partial recovery of COX activity in such cells; d) [(35)S]Methionine-labelled fusion L-Sco2 protein, produced in a cell free transcription/translation system and incubated with intact isolated mitochondria derived from K-562 cells, was efficiently processed to yield the corresponding mature Sco2 protein, thus justifying the potential of the transduced fusion L-Sco2 protein to successfully activate COX holoenzyme; and finally, e) recombinant fusion L-Sco2 protein was successfully transduced into the mitochondria of primary fibroblasts derived from SCO2/COX deficient patient and facilitated recovery of COX activity. These findings provide the rationale of delivering recombinant proteins via PTD technology as a model for therapeutic approach of mitochondrial disorders.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Clonagem Molecular , Primers do DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Humanos , Células K562 , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Transdução Genética
5.
Cancer Res ; 74(14): 3935-46, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24853546

RESUMO

The JmjC domain histone H3K36me2/me1 demethylase NDY1/KDM2B is overexpressed in various types of cancer. Here we show that knocking down NDY1 in a set of 10 cell lines derived from a broad range of human tumors inhibited their anchorage-dependent and anchorage-independent growth by inducing senescence and/or apoptosis in some and by inhibiting G1 progression in all. We further show that the knockdown of NDY1 in mammary adenocarcinoma cell lines decreased the number, size, and replating efficiency of mammospheres and downregulated the stem cell markers ALDH and CD44, while upregulating CD24. Together, these findings suggest that NDY1 is required for the self-renewal of cancer stem cells and are in agreement with additional findings showing that tumor cells in which NDY1 was knocked down undergo differentiation and a higher number of them is required to induce mammary adenocarcinomas, upon orthotopic injection in animals. Mechanistically, NDY1 functions as a master regulator of a set of miRNAs that target several members of the polycomb complexes PRC1 and PRC2, and its knockdown results in the de-repression of these miRNAs and the downregulation of their polycomb targets. Consistent with these observations, NDY1/KDM2B is expressed at higher levels in basal-like triple-negative breast cancers, and its overexpression is associated with higher rates of relapse after treatment. In addition, NDY1-regulated miRNAs are downregulated in both normal and cancer mammary stem cells. Finally, in primary human breast cancer, NDY1/KDM2B expression correlates negatively with the expression of the NDY1-regulated miRNAs and positively with the expression of their PRC targets.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box/genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imunofenotipagem , Histona Desmetilases com o Domínio Jumonji/genética , Fenótipo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/química , Subunidades Proteicas/metabolismo , Interferência de RNA
6.
Cancer Res ; 72(24): 6477-89, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041550

RESUMO

Overexpression of cyclin D1 is believed to endow mammary epithelial cells (MEC) with a proliferative advantage by virtue of its contribution to pRB inactivation. Accordingly, abrogation of the kinase-dependent function of cyclin D1 is sufficient to render mice resistant to breast cancer initiated by ErbB2. Here, we report that mouse cyclin D1(KE/KE) MECs (deficient in cyclin D1 activity) upregulate an autophagy-like process but fail to implement ErbB2-induced senescence in vivo. In addition, immortalized cyclin D1(KE/KE) MECs retain high rates of autophagy and reduced ErbB2-mediated transformation in vitro. However, highlighting its dual role during tumorigenesis, downregulation of autophagy led to an increase in senescence in cyclin D1(KE/KE) MECs. Autophagy upregulation was also confirmed in human mammary epithelial cells (HMEC) subjected to genetic and pharmacologic inhibition of cyclin D1 activity and, similar to our murine system, simultaneous inhibition of Cdk4/6 and autophagy in HMECs enhanced the senescence response. Collectively, our findings suggest a previously unrecognized function of cyclin D1 in suppressing autophagy in the mammary epithelium.


Assuntos
Autofagia/genética , Senescência Celular/genética , Ciclina D1/fisiologia , Epitélio/fisiologia , Glândulas Mamárias Animais/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular/fisiologia , Ciclina D1/genética , Ciclina D1/metabolismo , Epitélio/metabolismo , Feminino , Genes erbB-2/fisiologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
7.
Mol Genet Metab ; 81(3): 225-36, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14972329

RESUMO

The human Sco2 protein is a cytochrome c oxidase assembly protein that participates in mitochondrial copper pathway, acting downstream of Cox17 protein. In a previous work, we detected mutations in the human SCO2 gene in three unrelated infants with fatal cardioencephalomyopathy and COX deficiency. In this study, full-length processed recombinant wild-type and two mutated forms of hSco2p (w/t-rhSco2p, E140K-rhSco2p, and S225F-rhSco2p) were produced in bacteria as soluble recombinant peptides for the first time and evaluated for differences in their physical state and ability to bind copper. Our data indicate the following: (a) w/t-rhSco2p and S225F-rhSco2p were found to be in a monomeric form in contrast to E140K-rhSco2p that was in a major non-reducible dimer and a minor monomer form; (b) wild-type and mutated rhSco2p exhibited clear differences in their physical conformational state, as shown by circular dichroism and thermal denaturation analyses; (c) copper binding studies showed that E140K-rhSco2p bound markedly less copper while S225F-rhSco2p more than expected as compared to amount of the copper bound with w/t-rhSco2p. rhCox17p served as positive control experiment. These data indicate that S225F and E140K mutations found in the SCO2 gene derived from patients alter the physical conformational state of encoded hSco2p that may disturb the normal copper transport pathway in mitochondria. These findings are valuable for understanding the molecular basis of fatal cardioencephalomyopathy and COX deficiency and for designing appropriate pharmacological interventions.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte , Dicroísmo Circular , Proteínas de Transporte de Cobre , Dimerização , Humanos , Proteínas Mitocondriais , Modelos Moleculares , Chaperonas Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA