Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Apoptosis ; 25(9-10): 648-662, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627119

RESUMO

Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease.


Assuntos
Apoptose/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Interleucina-6/genética , Receptor fas/genética , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Proliferação de Células/genética , Células Cultivadas , Citocinas/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , MAP Quinase Quinase 4/genética , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Proteína Oncogênica v-akt/genética , Transdução de Sinais/efeitos dos fármacos , Estaurosporina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
Arterioscler Thromb Vasc Biol ; 39(11): 2289-2302, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434493

RESUMO

OBJECTIVE: Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP (G9A-like protein), the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK (mitogen-activated protein kinase) signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs. CONCLUSIONS: This study implicates H3K9me2 in regulating the proinflammatory VSMC phenotype. Our findings suggest that reduced H3K9me2 in disease enhance binding of NFκB and AP-1 (activator protein-1) transcription factors at specific inflammation-responsive genes to augment proinflammatory stimuli in VSMC. Therefore, H3K9me2-regulation could be targeted clinically to limit expression of MMPs and IL6, which are induced in vascular disease.


Assuntos
Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Desmetilação , Expressão Gênica , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo
3.
Circulation ; 137(1): 57-70, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030345

RESUMO

BACKGROUND: Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS: To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS: Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum-mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS: Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Fosforilação , Coelhos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo
4.
Arterioscler Thromb Vasc Biol ; 38(3): 555-565, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326312

RESUMO

OBJECTIVE: Vascular smooth muscle cell (VSMC) apoptosis accelerates atherosclerosis and promotes breakdown of the extracellular matrix, but the mechanistic links between these 2 processes are unknown. The forkhead protein FOXO3a (forkhead transcription factor O subfamily member 3a) is activated in human atherosclerosis and induces a range of proapoptotic and other transcriptional targets. We, therefore, determined the mechanisms and consequences of FOXO3a activation in atherosclerosis and arterial remodeling after injury. APPROACH AND RESULTS: Expression of a conditional FOXO3a allele (FOXO3aA3ER) potently induced VSMC apoptosis, expression and activation of MMP13 (matrix metalloproteinase 13), and downregulation of endogenous TIMPs (tissue inhibitors of MMPs). mmp13 and mmp2 were direct FOXO3a transcriptional targets in VSMCs. Activation of endogenous FOXO3a also induced MMP13, extracellular matrix degradation, and apoptosis, and MMP13-specific inhibitors and fibronectin reduced FOXO3a-mediated apoptosis. FOXO3a activation in mice with VSMC-restricted FOXO3aA3ER induced MMP13 expression and activity and medial VSMC apoptosis. FOXO3a activation in FOXO3aA3ER/ApoE-/- (apolipoprotein E deficient) mice increased atherosclerosis, increased necrotic core and reduced fibrous cap areas, and induced features of medial degeneration. After carotid artery ligation, FOXO3a activation increased VSMC apoptosis, VSMC proliferation, and neointima formation, all of which were reduced by MMP13 inhibition. CONCLUSIONS: FOXO3a activation induces VSMC apoptosis and extracellular matrix breakdown, in part, because of transcriptional activation of MMP13. FOXO3a activation promotes atherosclerosis and medial degeneration and increases neointima after injury that is partly dependent on MMP13. FOXO3a-induced MMP activation represents a direct mechanistic link between VSMC apoptosis and matrix breakdown in vascular disease.


Assuntos
Apoptose , Aterosclerose/enzimologia , Lesões das Artérias Carótidas/enzimologia , Matriz Extracelular/enzimologia , Proteína Forkhead Box O3/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Remodelação Vascular , Animais , Aterosclerose/genética , Aterosclerose/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrose , Proteína Forkhead Box O3/genética , Humanos , Masculino , Metaloproteinase 13 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout para ApoE , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Mutação , Miócitos de Músculo Liso/patologia , Necrose , Ratos Wistar , Transdução de Sinais , Ativação Transcricional
5.
Circ Res ; 119(12): 1313-1323, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27682618

RESUMO

RATIONALE: Vascular smooth muscle cell (VSMC) accumulation is a hallmark of atherosclerosis and vascular injury. However, fundamental aspects of proliferation and the phenotypic changes within individual VSMCs, which underlie vascular disease, remain unresolved. In particular, it is not known whether all VSMCs proliferate and display plasticity or whether individual cells can switch to multiple phenotypes. OBJECTIVE: To assess whether proliferation and plasticity in disease is a general characteristic of VSMCs or a feature of a subset of cells. METHODS AND RESULTS: Using multicolor lineage labeling, we demonstrate that VSMCs in injury-induced neointimal lesions and in atherosclerotic plaques are oligoclonal, derived from few expanding cells. Lineage tracing also revealed that the progeny of individual VSMCs contributes to both alpha smooth muscle actin (aSma)-positive fibrous cap and Mac3-expressing macrophage-like plaque core cells. Costaining for phenotypic markers further identified a double-positive aSma+ Mac3+ cell population, which is specific to VSMC-derived plaque cells. In contrast, VSMC-derived cells generating the neointima after vascular injury generally retained the expression of VSMC markers and the upregulation of Mac3 was less pronounced. Monochromatic regions in atherosclerotic plaques and injury-induced neointima did not contain VSMC-derived cells expressing a different fluorescent reporter protein, suggesting that proliferation-independent VSMC migration does not make a major contribution to VSMC accumulation in vascular disease. CONCLUSIONS: We demonstrate that extensive proliferation of a low proportion of highly plastic VSMCs results in the observed VSMC accumulation after injury and in atherosclerotic plaques. Therapeutic targeting of these hyperproliferating VSMCs might effectively reduce vascular disease without affecting vascular integrity.


Assuntos
Aterosclerose/fisiopatologia , Proliferação de Células/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Neointima/fisiopatologia , Lesões do Sistema Vascular/fisiopatologia , Animais , Aterosclerose/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Neointima/patologia , Lesões do Sistema Vascular/patologia
6.
Arterioscler Thromb Vasc Biol ; 37(12): 2322-2332, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28970293

RESUMO

OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis. APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis. CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Dano ao DNA , DNA Mitocondrial/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Respiração Celular , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Mitocondrial/genética , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Mitocôndrias Musculares/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia , Músculo Liso Vascular/patologia , Necrose , Consumo de Oxigênio , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
7.
Cardiovasc Res ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717632

RESUMO

AIMS: Vascular aging is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular aging, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular aging. METHODS AND RESULTS: We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of aging, and ECM proteomics in mice from 22-72w. Vascular aging was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalised all parameters to 72w. ECM proteomics identified major changes in collagens with aging, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor ß1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFß1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness. CONCLUSIONS: Vascular aging is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular aging, associated with changes in ECM regulatory proteins including LOX and WISP2.

8.
Nat Cardiovasc Res ; 3(6): 714-733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898928

RESUMO

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.

9.
Cardiovasc Res ; 119(5): 1279-1294, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-35994249

RESUMO

AIMS: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS: We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION: Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Ataxias Espinocerebelares , Adulto , Animais , Humanos , Músculo Liso Vascular/patologia , Doenças Cardiovasculares/patologia , Proliferação de Células , Aterosclerose/patologia , Fenótipo , Ataxias Espinocerebelares/patologia , Miócitos de Músculo Liso/patologia , Células Cultivadas
10.
Cardiovasc Res ; 118(7): 1713-1727, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34142149

RESUMO

AIMS: Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAßG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis. METHODS AND RESULTS: We examined traditional senescence markers in human and mouse VSMCs in vitro, and in mouse atherosclerosis. p16 and SAßG increased and Lamin B1 decreased in replicative senescence and stress-induced premature senescence (SIPS) of cultured human VSMCs. In contrast, mouse VSMCs undergoing SIPS showed only modest p16 up-regulation, and proliferating mouse monocyte/macrophages also expressed p16 and SAßG. Single cell RNA-sequencing (scRNA-seq) of lineage-traced mice showed increased p16 expression in VSMC-derived cells in plaques vs. normal arteries, but p16 localized to Stem cell antigen-1 (Sca1)+ or macrophage-like populations. Activation of a p16-driven suicide gene to remove p16+ vessel wall- and/or bone marrow-derived cells increased apoptotic cells, but also induced inflammation and did not change plaque size or composition. In contrast, the senolytic ABT-263 selectively reduced senescent VSMCs in culture, and markedly reduced atherogenesis. However, ABT-263 did not reduce senescence markers in vivo, and significantly reduced monocyte and platelet counts and interleukin 6 as a marker of systemic inflammation. CONCLUSIONS: We show that genetic and pharmacological senolysis have variable effects on atherosclerosis, and may promote inflammation and non-specific effects respectively. In addition, traditional markers of cell senescence such as p16 have significant limitations to identify and remove senescent cells in atherosclerosis, suggesting that senescence studies in atherosclerosis and new senolytic drugs require more specific and lineage-restricted markers before ascribing their effects entirely to senolysis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Senescência Celular , Humanos , Inflamação/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Senoterapia
11.
Commun Biol ; 4(1): 611, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021256

RESUMO

Accumulation of vascular smooth muscle cells (VSMCs) is a hallmark of multiple vascular pathologies, including following neointimal formation after injury and atherosclerosis. However, human VSMCs in advanced atherosclerotic lesions show reduced cell proliferation, extensive and persistent DNA damage, and features of premature cell senescence. Here, we report that stress-induced premature senescence (SIPS) and stable expression of a telomeric repeat-binding factor 2 protein mutant (TRF2T188A) induce senescence of human VSMCs, associated with persistent telomeric DNA damage. VSMC senescence is associated with formation of micronuclei, activation of cGAS-STING cytoplasmic sensing, and induction of multiple pro-inflammatory cytokines. VSMC-specific TRF2T188A expression in a multicolor clonal VSMC-tracking mouse model shows no change in VSMC clonal patches after injury, but an increase in neointima formation, outward remodeling, senescence and immune/inflammatory cell infiltration or retention. We suggest that persistent telomere damage in VSMCs inducing cell senescence has a major role in driving persistent inflammation in vascular disease.


Assuntos
Aterosclerose/patologia , Senescência Celular , Inflamação/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/patologia , Telômero/patologia , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Neointima/etiologia , Neointima/metabolismo , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
12.
Aging Cell ; 17(4): e12773, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29745022

RESUMO

Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased ß-stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN-regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+ ) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase-gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging.


Assuntos
Envelhecimento/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Rigidez Vascular/genética , Animais , DNA Mitocondrial/metabolismo , Feminino , Masculino , Camundongos , Mitocôndrias/metabolismo
13.
Cardiovasc Res ; 108(3): 357-66, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26395965

RESUMO

AIMS: In the heart, a period of ischaemia followed by reperfusion evokes powerful cytosolic Ca(2+) oscillations that can cause lethal cell injury. These signals represent attractive cardioprotective targets, but the underlying mechanisms of genesis are ill-defined. Here, we investigated the role of the second messenger nicotinic acid adenine dinucleotide phosphate (NAADP), which is known in several cell types to induce Ca(2+) oscillations that initiate from acidic stores such as lysosomes, likely via two-pore channels (TPCs, TPC1 and 2). METHODS AND RESULTS: An NAADP antagonist called Ned-K was developed by rational design based on a previously existing scaffold. Ned-K suppressed Ca(2+) oscillations and dramatically protected cardiomyocytes from cell death in vitro after ischaemia and reoxygenation, preventing opening of the mitochondrial permeability transition pore. Ned-K profoundly decreased infarct size in mice in vivo. Transgenic mice lacking the endo-lysosomal TPC1 were also protected from injury. CONCLUSION: NAADP signalling plays a major role in reperfusion-induced cell death and represents a potent pathway for protection against reperfusion injury.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carbolinas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , NADP/análogos & derivados , Piperazinas/farmacologia , Animais , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NADP/antagonistas & inibidores , NADP/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA