Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Bioinformatics ; 23(1): 99, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317743

RESUMO

BACKGROUND: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS: The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.


Assuntos
Ontologias Biológicas , Animais , Ontologia Genética , Humanos , Fenótipo , Xenopus laevis
2.
Artigo em Inglês | MEDLINE | ID: mdl-36413377

RESUMO

An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development, and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, re-analysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP and external research efforts.

3.
Nucleic Acids Res ; 48(D1): D776-D782, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31733057

RESUMO

Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes. Through expert curation and automated data provisioning from various sources Xenbase strives to integrate the body of knowledge on Xenopus genomics and biology together with the visualization of biologically significant interactions. Most current studies utilize next generation sequencing (NGS) but until now the results of different experiments were difficult to compare and not integrated with other Xenbase content. Xenbase has developed a suite of tools, interfaces and data processing pipelines that transforms NCBI Gene Expression Omnibus (GEO) NGS content into deeply integrated gene expression and chromatin data, mapping all aligned reads to the most recent genome builds. This content can be queried and visualized via multiple tools and also provides the basis for future automated 'gene expression as a phenotype' and gene regulatory network analyses.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Genômica , Software , Xenopus/genética , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq , Interface Usuário-Computador
4.
Nucleic Acids Res ; 46(D1): D861-D868, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059324

RESUMO

Xenbase (www.xenbase.org) is an online resource for researchers utilizing Xenopus laevis and Xenopus tropicalis, and for biomedical scientists seeking access to data generated with these model systems. Content is aggregated from a variety of external resources and also generated by in-house curation of scientific literature and bioinformatic analyses. Over the past two years many new types of content have been added along with new tools and functionalities to reflect the impact of high-throughput sequencing. These include new genomes for both supported species (each with chromosome scale assemblies), new genome annotations, genome segmentation, dynamic and interactive visualization for RNA-Seq data, updated ChIP-Seq mapping, GO terms, protein interaction data, ORFeome support, and improved connectivity to other biomedical and bioinformatic resources.


Assuntos
Bases de Dados Genéticas , Epigenômica , Genoma , Transcriptoma , Xenopus/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Imunoprecipitação da Cromatina , Biologia Computacional/organização & administração , Bases de Dados de Ácidos Nucleicos , Ontologia Genética , Genômica , MicroRNAs/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , RNA/genética , Software , Interface Usuário-Computador , Navegador , Xenopus laevis/genética
5.
Dev Biol ; 426(2): 384-392, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842699

RESUMO

Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Queratinas/genética , Família Multigênica/genética , Proteínas de Xenopus/genética , Xenopus/genética , Animais , Diploide , Epiderme/crescimento & desenvolvimento , Epiderme/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Genoma , Genômica , Filogenia , Proteômica/métodos , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Tetraploidia , Transcriptoma , Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
6.
Nucleic Acids Res ; 43(Database issue): D756-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313157

RESUMO

Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral.


Assuntos
Bases de Dados Genéticas , Xenopus/genética , Animais , Animais Geneticamente Modificados , Doença/genética , Genoma , Humanos , Internet , MicroRNAs/metabolismo , Modelos Animais , Morfolinos , Oligonucleotídeos Antissenso , Xenopus/imunologia , Xenopus laevis/genética
7.
Dev Biol ; 408(2): 345-57, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26391338

RESUMO

Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling.


Assuntos
Fases de Leitura Aberta , Xenopus/genética , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Bases de Dados Genéticas , Doença/genética , Genômica , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
Genesis ; 53(8): 486-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26150211

RESUMO

Xenbase, the Xenopus model organism database (www.xenbase.org), is a cloud-based, web-accessible resource that integrates the diverse genomic and biological data from Xenopus research. Xenopus frogs are one of the major vertebrate animal models used for biomedical research, and Xenbase is the central repository for the enormous amount of data generated using this model tetrapod. The goal of Xenbase is to accelerate discovery by enabling investigators to make novel connections between molecular pathways in Xenopus and human disease. Our relational database and user-friendly interface make these data easy to query and allows investigators to quickly interrogate and link different data types in ways that would otherwise be difficult, time consuming, or impossible. Xenbase also enhances the value of these data through high-quality gene expression curation and data integration, by providing bioinformatics tools optimized for Xenopus experiments, and by linking Xenopus data to other model organisms and to human data. Xenbase draws in data via pipelines that download data, parse the content, and save them into appropriate files and database tables. Furthermore, Xenbase makes these data accessible to the broader biomedical community by continually providing annotated data updates to organizations such as NCBI, UniProtKB, and Ensembl. Here, we describe our bioinformatics, genome-browsing tools, data acquisition and sharing, our community submitted and literature curation pipelines, text-mining support, gene page features, and the curation of gene nomenclature and gene models.


Assuntos
Bases de Dados Genéticas , Xenopus/genética , Animais , Biologia Computacional/métodos , Coleta de Dados , Curadoria de Dados , Modelos Animais , Software
9.
Nucleic Acids Res ; 41(Database issue): D865-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23125366

RESUMO

Xenbase (http://www.xenbase.org) is a model organism database that provides genomic, molecular, cellular and developmental biology content to biomedical researchers working with the frog, Xenopus and Xenopus data to workers using other model organisms. As an amphibian Xenopus serves as a useful evolutionary bridge between invertebrates and more complex vertebrates such as birds and mammals. Xenbase content is collated from a variety of external sources using automated and semi-automated pipelines then processed via a combination of automated and manual annotation. A link-matching system allows for the wide variety of synonyms used to describe biological data on unique features, such as a gene or an anatomical entity, to be used by the database in an equivalent manner. Recent updates to the database include the Xenopus laevis genome, a new Xenopus tropicalis genome build, epigenomic data, collections of RNA and protein sequences associated with genes, more powerful gene expression searches, a community and curated wiki, an extensive set of manually annotated gene expression patterns and a new database module that contains data on over 700 antibodies that are useful for exploring Xenopus cell and developmental biology.


Assuntos
Bases de Dados Genéticas , Xenopus/genética , Animais , Anticorpos , Epigênese Genética , Expressão Gênica , Genoma , Internet , Modelos Animais , Vocabulário Controlado , Xenopus/anatomia & histologia , Xenopus/embriologia , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética
10.
Front Physiol ; 10: 154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863320

RESUMO

At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.

11.
Methods Mol Biol ; 1757: 251-305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761462

RESUMO

Xenbase is the Xenopus model organism database ( www.xenbase.org ), a web-accessible resource that integrates the diverse genomic and biological data for Xenopus research. It hosts a variety of content including current and archived genomes for both X. laevis and X. tropicalis, bioinformatic tools for comparative genetic analyses including BLAST and GBrowse, annotated Xenopus literature, and catalogs of reagents including antibodies, ORFeome clones, morpholinos, and transgenic lines. Xenbase compiles gene-specific pages which include manually curated gene expression images, functional information including gene ontology (GO), disease associations, and links to other major data sources such as NCBI:Entrez, UniProtKB, and Ensembl. We also maintain the Xenopus Anatomy Ontology (XAO) which describes anatomy throughout embryonic development. This chapter provides a full description of the many features of Xenbase, and offers a guide on how to use various tools to perform a variety of common tasks such as identifying nucleic acid or protein sequences, finding gene expression patterns for specific genes, stages or tissues, identifying literature on a specific gene or tissue, locating useful reagents and downloading our extensive content, including Xenopus gene-Human gene disease mapping files.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Genoma , Genômica , Xenopus laevis/genética , Animais , Biologia Computacional/métodos , Ontologia Genética , Genômica/métodos , Software , Interface Usuário-Computador , Navegador
12.
J Biomed Semantics ; 4(1): 31, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24139024

RESUMO

BACKGROUND: The African clawed frogs Xenopus laevis and Xenopus tropicalis are prominent animal model organisms. Xenopus research contributes to the understanding of genetic, developmental and molecular mechanisms underlying human disease. The Xenopus Anatomy Ontology (XAO) reflects the anatomy and embryological development of Xenopus. The XAO provides consistent terminology that can be applied to anatomical feature descriptions along with a set of relationships that indicate how each anatomical entity is related to others in the embryo, tadpole, or adult frog. The XAO is integral to the functionality of Xenbase (http://www.xenbase.org), the Xenopus model organism database. RESULTS: We significantly expanded the XAO in the last five years by adding 612 anatomical terms, 2934 relationships between them, 640 synonyms, and 547 ontology cross-references. Each term now has a definition, so database users and curators can be certain they are selecting the correct term when specifying an anatomical entity. With developmental timing information now asserted for every anatomical term, the ontology provides internal checks that ensure high-quality gene expression and phenotype data annotation. The XAO, now with 1313 defined anatomical and developmental stage terms, has been integrated with Xenbase expression and anatomy term searches and it enables links between various data types including images, clones, and publications. Improvements to the XAO structure and anatomical definitions have also enhanced cross-references to anatomy ontologies of other model organisms and humans, providing a bridge between Xenopus data and other vertebrates. The ontology is free and open to all users. CONCLUSIONS: The expanded and improved XAO allows enhanced capture of Xenopus research data and aids mechanisms for performing complex retrieval and analysis of gene expression, phenotypes, and antibodies through text-matching and manual curation. Its comprehensive references to ontologies across taxa help integrate these data for human disease modeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA