Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Primatol ; 86(5): e23609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409820

RESUMO

The degree of dietary flexibility in primates is species specific; some incorporate a wider array of resources than others. Extreme interannual weather variability in Madagascar results in seasonal resource scarcity which has been linked to specialized behaviors in lemurs. Prolemur simus, for example, has been considered an obligate specialist on large culm bamboo with >60% of its diet composed of woody bamboos requiring morphological and physiological adaptations to process. Recent studies reported an ever-expanding list of dietary items, suggesting that this species may not be an obligate specialist. However, long-term quantitative feeding data are unavailable across this species' range. To explore the dietary flexibility of P. simus, we collected data at two northern sites, Ambalafary and Sahavola, and one southern site, Vatovavy, from September 2010 to January 2016 and May 2017 to September 2018, respectively. In total, we recorded 4022 h of behavioral data using instantaneous sampling of adult males and females from one group in Ambalafary, and two groups each in Sahavola and Vatovavy. We recorded 45 plant species eaten by P. simus over 7 years. We also observed significant differences in seasonal dietary composition between study sites. In Ambalafary, bamboo was the most frequently observed resource consumed (92.2%); however, non-bamboo resources comprised nearly one-third of the diet of P. simus in Sahavola and over 60% in Vatovavy. Consumption of all bamboo resources increased during the dry season at Ambalafary and during the wet season at Vatovavy, but never exceeded non-bamboo feeding at the latter. Culm pith feeding was only observed at Ambalafary, where it was more common during the dry season. We identify P. simus as a bamboo facultative specialist capable of adjusting its feeding behavior to its environment, indicating greater dietary flexibility than previously documented, which may enable the species to survive in increasingly degraded habitats.


Assuntos
Lemur , Lemuridae , Feminino , Masculino , Animais , Madagáscar , Lemuridae/fisiologia , Lemur/fisiologia , Comportamento Alimentar/fisiologia , Dieta/veterinária
2.
Am J Primatol ; : e23615, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467477

RESUMO

Forest loss and degradation due to land cover changes imperil biodiversity worldwide. Subtropical and tropical ecosystems experience high deforestation rates, negatively affecting species like primates. Madagascar's endemic lemurs face exceptionally high risks of population declines and extirpation. We examined how short-term land cover changes within a fragmented landscape in southeastern Madagascar impacted the density of lemur species. Using line transects, we assessed density changes in nine lemur species across five forest fragments. Diurnal surveys were conducted monthly from 2015 to 2019 on 35 transects (total effort = 1268 km). Additionally, 21 transects were surveyed nocturnally in 2015 and 2016 (total effort = 107.5 km). To quantify forest cover changes, we generated land use/land cover (LULC) maps from Sentinel-2 imagery using supervised classification for each year. For the LULC maps, we overlayed species-specific buffers around all transects and calculated the proportion of land cover classes within them. We observed declines in the annual densities of four diurnal and cathemeral lemur species between 2015 and 2019, with species-specific declines of up to 80% (Varecia variegata). While the density of two nocturnal species decreased, one increased fivefold (Cheirogaleus major) between 2015 and 2016. By 2019, Grassland was the dominant land type (50%), while Paddy Fields had the smallest coverage (1.03%). Mature Agricultural Land increased the most (63.37%), while New Agricultural Land decreased the most (-66.36%). Unexpectedly, we did not find evidence that higher forest cover supported a higher lemur population density within sampled areas, but we found support for the negative impact of degraded land cover types on three lemur species. Our study underscores the urgent need to address land-use changes and their repercussions for primate populations in tropical ecosystems. The diverse responses of lemur species to modified habitats highlight the complexity of these impacts and emphasize the importance of targeted conservation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA