Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(13): e202303897, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38078495

RESUMO

The use of Activated Carboxylic Acids (ACAs) allows the time-controlled operation of dissipative chemical systems based on the acid-base reaction by providing both the stimulus that temporarily drives a physicochemical change and, subsequently, the counter-stimulus with a single reagent addition. However, their application is inherently limited to acid-sensitive systems. To overcome this limitation, we herein develop a straightforward device for the transduction of the acid-base stimuli delivered by an ACA into a voltage signal that, in turn, is used to control voltage-sensitive circuits that are not pH-responsive by themselves. The signal transductor can be easily assembled from common laboratory equipment and employs aqueous solutions of readily available chemicals. Furthermore, the operator can simply and intuitively tune the amplitude of the voltage signal, as well as its duration and offset by varying the concentration of the chemical species involved in the transduction process.

2.
Angew Chem Int Ed Engl ; 63(21): e202401694, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38478739

RESUMO

Precise control of substrate positioning and orientation (its proximity to the reactive unit) is often invoked to rationalize the superior enzymatic reaction rates and selectivities when compared to synthetic models. Artificial nonheme iron (IV) oxo (Fe(IV)=O) complexes react with C(sp3)-H bonds via a biomimetic Hydrogen Atom Transfer/Hydroxyl Rebound mechanism, but rates, site-selectivity and even hydroxyl rebound efficiency (ligand rebound versus substrate radical diffusion) are smaller than in oxygenases. Herein, we quantitatively analyze how substrate binding modulates nonheme Fe(IV)=O reactivity by comparing rates and outcomes of C-H oxidation by a pair of Fe(IV)=O complexes that share the same first coordination sphere but only one contains a crown ether receptor that recognizes the substrate. Substrate binding makes the reaction intramolecular, exhibiting Michaelis-Menten kinetics and increased reaction rates. In addition, C-H oxidation occurs with high site selectivity for remote sites. Analysis of Effective Molarity reveals that the system operates at its maximal theoretical capability for the oxidation of these remote sites. Remarkably, substrate positioning also affects Hydroxyl Rebound, whose efficiency only increases on the sites placed in proximity by recognition. Overall, these observations provide evidence that supramolecular control of substrate positioning can effectively modulate the reactivity of oxygenases and its models.

3.
Chemistry ; 29(49): e202301835, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326465

RESUMO

The operation of a dissipative network composed of two or three different crown-ether receptors and an alkali metal cation can be temporally driven by the use (combined or not) of two orthogonal stimuli of a different nature. More specifically, irradiation with light at a proper wavelength and/or addition of an activated carboxylic acid, are used to modulate the binding capability of the above crown-ethers towards the metal ion, allowing to control over time the occupancy of the metal cation in the crown-ether moiety of a given ligand. Thus, application of either or both of the stimuli to an initially equilibrated system, where the metal cation is distributed among the crown-ether receptors depending on the different affinities, causes a programmable change in the receptor occupancies. Consequently, the system is induced to evolve to one or more out-of-equilibrium states with different distributions of the metal cation among the different receptors. When the fuel is exhausted or/and the irradiation interrupted, the system reversibly and autonomously goes back to the initial equilibrium state. Such results may contribute to the achievement of new dissipative systems that, taking advantage of multiple and orthogonal stimuli, are featured with more sophisticated operating mechanisms and time programmability.

4.
Chemistry ; 28(4): e202103825, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34850474

RESUMO

The satisfactory rationalization of complex reactive pathways in solution chemistry may greatly benefit from the combined use of advanced experimental and theoretical complementary methods of analysis. In this work, we combine X-Ray Absorption and 1 H NMR spectroscopies with state-of-the-art Multivariate Curve Resolution and theoretical analyses to gain a comprehensive view on a prototypical reaction involving the variation of the oxidation state and local structure environment of a selected metal ion coordinated by organic ligands. Specifically, we investigate the 2-cyano-2-phenylpropanoic acid reduction of the octahedral complex established by the Cu2+ ion with terpyridine to the tetrahedral complex formed by Cu+ and neocuproine. Through our interdisciplinary approach we gain insights into the nature, concentration time evolution and structures of the key metal (XAS measurements) and organic (1 H NMR measurements) species under reaction. We believe our method may prove to be useful in the toolbox necessary to understand the mechanisms of reactive processes of interest in solution.

5.
Commun Chem ; 7(1): 116, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806668

RESUMO

Brønsted basicity is a fundamental chemical property featured by several kinds of inorganic and organic compounds. In this Review, we treat a particularly high basicity resulting from the mechanical entanglement involving two or more molecular subunits in catenanes and rotaxanes. Such entanglement allows a number of basic sites to be in close proximity with each other, highly increasing the proton affinity in comparison with the corresponding, non-entangled counterparts up to obtain superbases, properly defined as mechanically interlocked superbases. In the following pages, the development of this kind of superbases will be described with a historical perusal, starting from the initial, serendipitous findings up to the most recent reports where the strong basic property of entangled molecular units is the object of a rational design.

6.
J Phys Chem Lett ; 13(24): 5522-5529, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35695810

RESUMO

The dissipative translocation of the Zn2+ ion between two prototypical coordination complexes has been investigated by combining X-ray absorption and 1H NMR spectroscopy. An integrated experimental and theoretical approach, based on state-of-the-art Multivariate Curve Resolution and DFT based theoretical analyses, is presented as a means to understand the concentration time evolution of all relevant Zn and organic species in the investigated processes, and accurately characterize the solution structures of the key metal coordination complexes. Specifically, we investigate the dissipative translocation of the Zn2+ cation from hexaaza-18-crown-6 to two terpyridine moieties and back again to hexaaza-18-crown-6 using 2-cyano-2-phenylpropanoic acid and its para-chloro derivative as fuels. Our interdisciplinary approach has been proven to be a valuable tool to shed light on reactive systems containing metal ions that are silent to other spectroscopic methods. These combined experimental approaches will enable future applications to chemical and biological systems in a predictive manner.


Assuntos
Complexos de Coordenação , Cátions , Complexos de Coordenação/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Metais , Raios X , Zinco/química
7.
ACS Omega ; 6(40): 26428-26438, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661000

RESUMO

A kinetic analysis of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the iron(IV)-oxo complex [(N4Py)FeIV(O)]2+ and to the phthalimide N-oxyl radical (PINO) has been carried out. The results indicate that a higher activating effect of α-heteroatoms toward the HAT from C-H bonds is observed with the more electrophilic PINO radical. When the N-hydroxy precursor of PINO, N-hydroxyphthalimide (NHPI), is used as a HAT mediator in the oxidation promoted by [(N4Py)FeIV(O)]2+, significant differences in terms of selectivity have been found. Product studies of the competitive oxidations of primary and secondary aliphatic alcohols (1-decanol, cyclopentanol, and cyclohexanol) with alkylaromatics (ethylbenzene and diphenylmethane) demonstrated that it is possible to modify the selectivity of the oxidations promoted by [(N4Py)FeIV(O)]2+ in the presence of NHPI. In fact, alkylaromatic substrates are more reactive in the absence of the mediator while alcohols are preferably oxidized in the presence of NHPI.

8.
RSC Adv ; 11(1): 537-542, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35423066

RESUMO

Sterically hindered imine-based non-heme complexes 4 and 5 rapidly self-assemble in acetonitrile at 25 °C, when the corresponding building blocks are added in solution in the proper ratios. Such complexes are investigated as catalysts for the H2O2 oxidation of a series of substrates in order to ascertain the role and the importance of the ligand steric hindrance on the action of the catalytic core 1, previously shown to be an efficient catalyst for aliphatic and aromatic C-H bond oxidation. The study reveals a modest dependence of the output of the oxidation reactions on the presence of bulky substituents in the backbone of the catalyst, both in terms of activity and selectivity. This result supports a previously hypothesized catalytic mechanism, which is based on the hemi-lability of the metal complex. In the active form of the catalyst, one of the pyridine arms temporarily leaves the iron centre, freeing up a lot of room for the access of the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA