Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 7070-7075, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466639

RESUMO

The recently discovered interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) in multilayers with perpendicular magnetic anisotropy favors canting of spins in the in-plane direction. It could thus stabilize intriguing spin textures such as Hopfions. A key requirement for nucleation is to control the IL-DMI. Therefore, we investigate the influence of an electric current on a synthetic antiferromagnet with growth-induced IL-DMI. The IL-DMI is quantified by using out-of-plane hysteresis loops of the anomalous Hall effect while applying a static in-plane magnetic field at varied azimuthal angles. We observe a shift in the azimuthal dependence with an increasing current, which we conclude to originate from the additional in-plane symmetry breaking introduced by the current flow. Fitting the angular dependence, we demonstrate the presence of an additive current-induced term that linearly increases the IL-DMI in the direction of current flow. This opens the possibility of easily manipulating 3D spin textures by currents.

2.
Nano Lett ; 22(13): 5114-5119, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35699946

RESUMO

We explore spin dynamics in Cu(1,3-bdc), a quasi-2D topological magnon insulator. The results show that the thermal evolution of the Landé g factor (g) is anisotropic: gin-plane decreases while gout-of-plane increases with increasing temperature T. Moreover, the anisotropy of the g factor (Δg) and the anisotropy of saturation magnetization (ΔMs) are correlated below 4 K, but they diverge above 4 K. We show that the electronic orbital moment contributes to the g anisotropy at lower T, while the topological orbital moment induced by thermally excited spin chirality dictates the g anisotropy at higher T. Our work suggests an interplay among topology, spin chirality, and orbital magnetism in Cu(1,3-bdc).

3.
IEEE Trans Magn ; 57(7)2021.
Artigo em Inglês | MEDLINE | ID: mdl-37057056

RESUMO

Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins and magnetization. More recently interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this Roadmap paper, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, two-dimensional materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers, such as magnetic insulators, antiferromagnets, and ferrimagnets. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three-terminal and two-terminal SOT-magnetoresistive random-access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain wall and skyrmion racetrack memories. This paper aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.

4.
Phys Rev Lett ; 124(9): 096602, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202897

RESUMO

We demonstrate the emergence of an anomalous Hall effect in chiral magnetic textures which is neither proportional to the net magnetization nor to the well-known emergent magnetic field that is responsible for the topological Hall effect. Instead, it appears already at linear order in the gradients of the magnetization texture and exists for one-dimensional magnetic textures such as domain walls and spin spirals. It receives a natural interpretation in the language of Alain Connes' noncommutative geometry. We show that this chiral Hall effect resembles the familiar topological Hall effect in essential properties while its phenomenology is distinctly different. Our findings make the reinterpretation of experimental data necessary, and offer an exciting twist in engineering the electrical transport through magnetic skyrmions.

5.
Phys Rev Lett ; 125(17): 177201, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156648

RESUMO

Current-induced spin-orbit torques (SOTs) allow for the efficient electrical manipulation of magnetism in spintronic devices. Engineering the SOT efficiency is a key goal that is pursued by maximizing the active interfacial spin accumulation or modulating the nonequilibrium spin density that builds up through the spin Hall and inverse spin galvanic effects. Regardless of the origin, the fundamental requirement for the generation of the current-induced torques is a net spin accumulation. We report on the large enhancement of the SOT efficiency in thulium iron garnet (TmIG)/Pt by capping with a CuO_{x} layer. Considering the weak spin-orbit coupling (SOC) of CuO_{x}, these surprising findings likely result from an orbital current generated at the interface between CuO_{x} and Pt, which is injected into the Pt layer and converted into a spin current by strong SOC. The converted spin current decays across the Pt layer and exerts a "nonlocal" torque on TmIG. This additional torque leads to a maximum colossal enhancement of the SOT efficiency of a factor 16 for 1.5 nm of Pt at room temperature, thus opening a path to increase torques while at the same time offering insights into the underlying physics of orbital transport, which has so far been elusive.

6.
Nat Mater ; 17(6): 478-479, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795218

Assuntos
Órbita , Torque
7.
Phys Rev Lett ; 113(19): 196602, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415914

RESUMO

We investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn>IrMn>PdMn>FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spin Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.

8.
Nat Nanotechnol ; 18(10): 1132-1138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37550573

RESUMO

The emerging field of orbitronics exploits the electron orbital momentum L. Compared to spin-polarized electrons, L may allow the transfer of magnetic information with considerably higher density over longer distances in more materials. However, direct experimental observation of L currents, their extended propagation lengths and their conversion into charge currents has remained challenging. Here, we optically trigger ultrafast angular-momentum transport in Ni|W|SiO2 thin-film stacks. The resulting terahertz charge-current bursts exhibit a marked delay and width that grow linearly with the W thickness. We consistently ascribe these observations to a ballistic L current from Ni through W with a giant decay length (~80 nm) and low velocity (~0.1 nm fs-1). At the W/SiO2 interface, the L flow is efficiently converted into a charge current by the inverse orbital Rashba-Edelstein effect, consistent with ab initio calculations. Our findings establish orbitronic materials with long-distance ballistic L transport as possible candidates for future ultrafast devices and an approach to discriminate Hall-like and Rashba-Edelstein-like conversion processes.

9.
Phys Rev Lett ; 106(11): 117202, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21469892

RESUMO

We carry out ab initio calculations which demonstrate the importance of the non-spin-conserving part of the spin-orbit interaction for the intrinsic anomalous Hall conductivity of ordered FePt alloys. The impact of this interaction is strongly reduced if Pt is replaced by the lighter isoelectronic element Pd. An analysis of the interband transitions responsible for the anomalous velocity reveals that spin-flip transitions occur not only at avoided band crossings near the Fermi level, but also between well-separated pairs of bands with similar dispersions. We also predict a strong anisotropy in the anomalous Hall conductivity of FePt caused entirely by low-frequency spin-flip transitions.

10.
Phys Rev Lett ; 107(10): 106601, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21981517

RESUMO

We report on first-principles calculations of the side-jump contribution to the anomalous Hall conductivity (AHC) directly from the electronic structure of a perfect crystal. We implemented our approach for a short-range scattering disorder model within the density functional theory and computed the full scattering-independent AHC in elemental bcc Fe, hcp Co, fcc Ni, and L1(0) FePd and FePt alloys. The full AHC thus calculated agrees systematically with experiment to a degree unattainable so far, correctly capturing the previously missing elements of side-jump contributions, hence paving the way to a truly predictive theory of the anomalous Hall effect and turning it from a characterization tool to a probing tool of multiband complex electronic band structures.

11.
J Phys Condens Matter ; 34(5)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678787

RESUMO

We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response of the electric current quadratic in the applied electric field. We compare two different formalisms, namely the standard Keldysh nonequilibrium formalism and the Moyal-Keldysh formalism, to derive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical numerical results when applied to the ferromagnetic Rashba model. The UMR and the NLHE nonlinear conductivities tend to be comparable in magnitude according to our calculations. Additionally, their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The nonlinear zero-frequency response considered here is several orders of magnitude higher than the one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle approximation to literature expressions of the UMR that have been obtained within the constant relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find that the Boltzmann result does not correspond to the intraband term of the Keldysh expression. Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term that can be brought into the form of an effective intraband term due to thef-sum rule.

12.
Phys Rev Lett ; 105(24): 246602, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21231542

RESUMO

We report on first principles calculations of the anisotropy of the intrinsic spin Hall conductivity (SHC) in nonmagnetic hcp metals and in antiferromagnetic Cr. For most of the metals of this study we find large anisotropies. We derive the general relation between the SHC vector and the direction of spin polarization and discuss its consequences for hcp metals. Especially, it is predicted that for systems where the SHC changes sign due to the anisotropy the spin Hall effect may be tuned such that the spin polarization is parallel either to the electric field or to the spin current.

13.
Nat Commun ; 11(1): 6304, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298908

RESUMO

While chiral spin structures stabilized by Dzyaloshinskii-Moriya interaction (DMI) are candidates as novel information carriers, their dynamics on the fs-ps timescale is little known. Since with the bulk Heisenberg exchange and the interfacial DMI two distinct exchange mechanisms are at play, the ultrafast dynamics of the chiral order needs to be ascertained and compared to the dynamics of the conventional collinear order. Using an XUV free-electron laser we determine the fs-ps temporal evolution of the chiral order in domain walls in a magnetic thin film sample by an IR pump - X-ray magnetic scattering probe experiment. Upon demagnetization we observe that the dichroic (CL-CR) signal connected with the chiral order correlator mzmx in the domain walls recovers significantly faster than the (CL + CR) sum signal representing the average collinear domain magnetization mz2 + mx2. We explore possible explanations based on spin structure dynamics and reduced transversal magnetization fluctuations inside the domain walls and find that the latter can explain the experimental data leading to different dynamics for collinear magnetic order and chiral magnetic order.

14.
Phys Rev Res ; 2(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33655217

RESUMO

Motivated by the importance of understanding various competing mechanisms to the current-induced spin-orbit torque on magnetization in complex magnets, we develop a theory of current-induced spin-orbital coupled dynamics in magnetic heterostructures. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom, achieved in a steady state under an applied external electric field. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. We evaluate the sources of torque using density functional theory, effectively capturing the impact of the electronic structure on these quantities. We apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of the non-magnetic substrate. Thus the effective spin Hall angles for the total torque are negative and positive in the two systems. Our prediction can be experimentally identified in moderately clean samples, where intrinsic contributions dominate. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the "spin current picture" by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.

15.
J Phys Condens Matter ; 32(16): 165902, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31658458

RESUMO

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

17.
Sci Rep ; 7: 41078, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106133

RESUMO

We predict from first principles an entirely topological orbital magnetization in the noncoplanar bulk antiferromagnet γ-FeMn originating in the nontrivial topology of the underlying spin structure, without any reference to spin-orbit interaction. Studying the influence of strain, composition ratio, and spin texture on the topological orbital magnetization and the accompanying topological Hall effect, we promote the scalar spin chirality as key mechanism lifting the orbital degeneracy. The system is thus a prototypical topological orbital ferromagnet, the macroscopic orbital magnetization of which is prominent even without spin-orbit coupling. One of the remarkable features of γ-FeMn is the possibility for pronounced orbital magnetostriction mediated by the complex spin topology in real space.

18.
Nat Commun ; 8(1): 1479, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29133825

RESUMO

Reliable and energy-efficient magnetization switching by electrically induced spin-orbit torques is of crucial technological relevance for spintronic devices implementing memory and logic functionality. Here we predict that the strength of spin-orbit torques and the Dzyaloshinskii-Moriya interaction in topologically nontrivial magnetic insulators can exceed by far that of conventional metals. In analogy to the quantum anomalous Hall effect, we explain this extraordinary response in the absence of longitudinal currents as hallmark of monopoles in the electronic structure of systems that are interpreted most naturally within the framework of mixed Weyl semimetals. We thereby launch the effect of spin-orbit torque into the field of topology and reveal its crucial role in mediating the topological phase transitions arising from the complex interplay between magnetization direction and momentum-space topology. The presented concepts may be exploited to understand and utilize magnetoelectric coupling phenomena in insulating ferromagnets and antiferromagnets.

19.
Sci Rep ; 7: 46742, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440289

RESUMO

As the inversion symmetry is broken at a surface, spin-orbit interaction gives rise to spin-dependent energy shifts - a phenomenon which is known as the spin Rashba effect. Recently, it has been recognized that an orbital counterpart of the spin Rashba effect - the orbital Rashba effect - can be realized at surfaces even without spin-orbit coupling. Here, we propose a mechanism for the orbital Rashba effect based on sp orbital hybridization, which ultimately leads to the electric polarization of surface states. For the experimentally well-studied system of a BiAg2 monolayer, as a proof of principle, we show from first principles that this effect leads to chiral orbital textures in k-space. In predicting the magnitude of the orbital moment arising from the orbital Rashba effect, we demonstrate the crucial role played by the Berry phase theory for the magnitude and variation of the orbital textures. As a result, we predict a pronounced manifestation of various orbital effects at surfaces, and proclaim the orbital Rashba effect to be a key platform for surface orbitronics.

20.
J Phys Condens Matter ; 28(31): 316001, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27301682

RESUMO

Using the Kubo linear-response formalism we derive expressions to calculate the electronic contribution to the heat current generated by magnetization dynamics in ferromagnetic metals with broken inversion symmetry and spin-orbit interaction (SOI). The effect of producing heat currents by magnetization dynamics constitutes the Onsager reciprocal of the thermal spin-orbit torque (TSOT), i.e. the generation of torques on the magnetization due to temperature gradients. We find that the energy current driven by magnetization dynamics contains a contribution from the Dzyaloshinskii-Moriya interaction (DMI), which needs to be subtracted from the Kubo linear response of the energy current in order to extract the heat current. We show that the expressions of the DMI coefficient can be derived elegantly from the DMI energy current. Guided by formal analogies between the Berry phase theory of DMI on the one hand and the modern theory of orbital magnetization on the other hand we are led to an interpretation of the latter in terms of energy currents as well. Based on ab initio calculations we investigate the electronic contribution to the heat current driven by magnetization dynamics in Mn/W(0 0 1) magnetic bilayers. We predict that fast domain walls drive strong heat currents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA