Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(16): 3635-3646, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412012

RESUMO

Apolipoprotein A-IV (apoA-IV) is a major component of HDL and chylomicron particles and is involved in reverse cholesterol transport. It is an early marker of impaired renal function. We aimed to identify genetic loci associated with apoA-IV concentrations and to investigate relationships with known susceptibility loci for kidney function and lipids. A genome-wide association meta-analysis on apoA-IV concentrations was conducted in five population-based cohorts (n = 13,813) followed by two additional replication studies (n = 2,267) including approximately 10 M SNPs. Three independent SNPs from two genomic regions were significantly associated with apoA-IV concentrations: rs1729407 near APOA4 (P = 6.77 × 10 - 44), rs5104 in APOA4 (P = 1.79 × 10-24) and rs4241819 in KLKB1 (P = 5.6 × 10-14). Additionally, a look-up of the replicated SNPs in downloadable GWAS meta-analysis results was performed on kidney function (defined by eGFR), HDL-cholesterol and triglycerides. From these three SNPs mentioned above, only rs1729407 showed an association with HDL-cholesterol (P = 7.1 × 10 - 07). Moreover, weighted SNP-scores were built involving known susceptibility loci for the aforementioned traits (53, 70 and 38 SNPs, respectively) and were associated with apoA-IV concentrations. This analysis revealed a significant and an inverse association for kidney function with apoA-IV concentrations (P = 5.5 × 10-05). Furthermore, an increase of triglyceride-increasing alleles was found to decrease apoA-IV concentrations (P = 0.0078). In summary, we identified two independent SNPs located in or next the APOA4 gene and one SNP in KLKB1 The association of KLKB1 with apoA-IV suggests an involvement of apoA-IV in renal metabolism and/or an interaction within HDL particles. Analyses of SNP-scores indicate potential causal effects of kidney function and by lesser extent triglycerides on apoA-IV concentrations.


Assuntos
Apolipoproteínas A/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Alelos , Apolipoproteínas A/sangue , HDL-Colesterol/sangue , HDL-Colesterol/genética , Feminino , Humanos , Rim/metabolismo , Lipídeos/sangue , Lipídeos/genética , Masculino , Triglicerídeos/sangue , Triglicerídeos/genética
2.
Arterioscler Thromb Vasc Biol ; 36(11): 2252-2258, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27687604

RESUMO

OBJECTIVE: A recent observational study with almost 2 million men reported an association between low high-density lipoprotein (HDL) cholesterol and worse kidney function. The causality of this association would be strongly supported if genetic variants associated with HDL cholesterol were also associated with kidney function. APPROACH AND RESULTS: We used 68 genetic variants (single-nucleotide polymorphisms [SNPs]) associated with HDL cholesterol in genome-wide association studies including >188 000 subjects and tested their association with estimated glomerular filtration rate (eGFR) using summary statistics from another genome-wide association studies meta-analysis of kidney function including ≤133 413 subjects. Fourteen of the 68 SNPs (21%) had a P value <0.05 compared with the 5% expected by chance (Binomial test P=5.8×10-6). After Bonferroni correction, 6 SNPs were still significantly associated with eGFR. The genetic variants with the strongest associations with HDL cholesterol concentrations were not the same as those with the strongest association with kidney function and vice versa. An evaluation of pleiotropy indicated that the effects of the HDL-associated SNPs on eGFR were not mediated by HDL cholesterol. In addition, we performed a Mendelian randomization analysis. This analysis revealed a positive but nonsignificant causal effect of HDL cholesterol-increasing variants on eGFR. CONCLUSIONS: In summary, our findings indicate that HDL cholesterol does not causally influence eGFR and propose pleiotropic effects on eGFR for some HDL cholesterol-associated SNPs. This may cause the observed association by mechanisms other than the mere HDL cholesterol concentration.


Assuntos
HDL-Colesterol/sangue , Dislipidemias/genética , Taxa de Filtração Glomerular/genética , Nefropatias/genética , Rim/fisiopatologia , Polimorfismo de Nucleotídeo Único , Biomarcadores/sangue , Bases de Dados Genéticas , Dislipidemias/sangue , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/diagnóstico , Nefropatias/epidemiologia , Nefropatias/fisiopatologia , Análise da Randomização Mendeliana , Fenótipo , Medição de Risco , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA