RESUMO
The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.
Assuntos
Biodiversidade , Clima , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Aquecimento Global/prevenção & controle , Animais , Sequestro de Carbono , Pesqueiros , Sedimentos Geológicos/química , Atividades Humanas , Cooperação InternacionalRESUMO
The amount of ocean protected from fishing and other human impacts has often been used as a metric of conservation progress. However, protection efforts have highly variable outcomes that depend on local conditions, which makes it difficult to quantify what coral reef protection efforts to date have actually achieved at a global scale. Here, we develop a predictive model of how local conditions influence conservation outcomes on ~2,600 coral reef sites across 44 ecoregions, which we used to quantify how much more fish biomass there is on coral reefs compared to a modeled scenario with no protection. Under the assumptions of our model, our study reveals that without existing protection efforts there would be ~10% less fish biomass on coral reefs. Thus, we estimate that coral reef protection efforts have led to approximately 1 in every 10 kg of existing fish biomass.
Assuntos
Biomassa , Conservação dos Recursos Naturais , Recifes de Corais , Peixes , Animais , Peixes/fisiologia , Conservação dos Recursos Naturais/métodos , HumanosRESUMO
Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Humanos , Biodiversidade , Espécies Introduzidas , Mudança Climática , MamíferosRESUMO
Scientific advances in environmental data coverage and machine learning algorithms have improved the ability to make large-scale predictions where data are missing. These advances allowed us to develop a spatially resolved proxy for predicting numbers of tropical nearshore marine taxa. A diverse marine environmental spatial database was used to model numbers of taxa from â¼1000 field sites, and the predictions were applied to all 7039 6.25-km2 reef cells in 9 ecoregions and 11 nations of the western Indian Ocean. Our proxy for total numbers of taxa was based on the positive correlation (r2 = 0.24) of numbers of taxa of hard corals and 5 highly diverse reef fish families. Environmental relationships indicated that the number of fish species was largely influenced by biomass, nearness to people, governance, connectivity, and productivity and that coral taxa were influenced mostly by physicochemical environmental variability. At spatial delineations of province, ecoregion, nation, and strength of spatial clustering, we compared areas of conservation priority based on our total species proxy with those identified in 3 previous priority-setting reports and with the protected area database. Our method identified 119 locations that fit 3 numbers of taxa (hard coral, fish, and their combination) and 4 spatial delineations (nation, ecoregion, province, and reef clustering) criteria. Previous publications on priority setting identified 91 priority locations of which 6 were identified by all reports. We identified 12 locations that fit our 12 criteria and corresponded with 3 previously identified locations, 65 that aligned with at least 1 past report, and 28 that were new locations. Only 34% of the 208 marine protected areas in this province overlapped with identified locations with high numbers of predicted taxa. Differences occurred because past priorities were frequently based on unquantified perceptions of remoteness and preselected priority taxa. Our environment-species proxy and modeling approach can be considered among other important criteria for making conservation decisions.
Evaluación de la concordancia entre la riqueza de especies pronosticada, priorizaciones pasadas y la designación de áreas marinas protegidas en el oeste del Océano Índico Resumen Los avances científicos en la cobertura de datos ambientales y los algoritmos de aprendizaje automatizado han mejorado la capacidad de predecir a gran escala cuando hacen falta datos. Estos avances nos permiten desarrollar un representante con resolución espacial para predecir la cantidad de taxones marinos en las costas tropicales. Usamos una base de datos espaciales de diversos ambientes marinos para modelar la cantidad de taxones a partir de â¼1000 sitios de campo y aplicamos las predicciones a las 7039 celdas arrecifales de 6.25km2 en nueve ecorregiones y once países del oeste del Océano Índico. Nuestro representante para la cantidad total de taxones se basó en la correlación positiva (r2=0.24) de la cantidad de taxones de corales duros y cinco familias de peces arrecifales con diversidad alta. Las relaciones ambientales indicaron que el número de especies de peces estuvo influenciado principalmente por la biomasa, la cercanía a las personas, la gestión, la conectividad y la productividad y que los taxones de coral estuvieron influenciados principalmente por la variabilidad ambiental fisicoquímica. Comparamos la prioridad de las áreas de conservación a nivel de las delimitaciones espaciales de provincia, ecorregión, nación y fuerza del agrupamiento espacial basado en nuestro total de especies representantes con aquellas especies identificadas en tres reportes previos de establecimiento de prioridades y con la base de datos de áreas protegidas. Con nuestro método identificamos 119 localidades aptas para tres cantidades de taxones (corales duros, peces y su combinación) y cuatro criterios de delimitación espacial (nación, ecorregión, provincia y grupo de arrecifes). Las publicaciones previas sobre el establecimiento de prioridades identificaron 91 localidades prioritarias de las cuales seis fueron identificadas por todos los reportes. Identificamos doce localidades que se ajustan a nuestros doce criterios y se correspondieron con tres localidades identificadas previamente, 65 que se alinearon con al menos un reporte anterior y 28 que eran nuevas localidades. Sólo 34% de las 208 áreas marinas protegidas en esta provincia se traslaparon con localidades identificadas con un gran número de taxones pronosticados. Hubo diferencias porque en el pasado se priorizaba frecuentemente con base en las percepciones no cuantificadas de lo remoto y prioritario de los taxones preseleccionados. Nuestra especie representante del ambiente y nuestra estrategia de modelo pueden considerarse entre otros criterios importantes para tomar decisiones de conservación.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Recifes de Corais , Peixes , Conservação dos Recursos Naturais/métodos , Oceano Índico , Animais , Peixes/fisiologia , Antozoários/fisiologiaRESUMO
Marine protected areas (MPAs) are conservation tools that are increasingly implemented, with growing national commitments for MPA expansion. Perhaps the greatest challenge to expanded use of MPAs is the perceived trade-off between protection and food production. Since MPAs can benefit both conservation and fisheries in areas experiencing overfishing and since overfishing is common in many coastal nations, we ask how MPAs can be designed specifically to improve fisheries yields. We assembled distribution, life history, and fisheries exploitation data for 1,338 commercially important stocks to derive an optimized network of MPAs globally. We show that strategically expanding the existing global MPA network to protect an additional 5% of the ocean could increase future catch by at least 20% via spillover, generating 9 to 12 million metric tons more food annually than in a business-as-usual world with no additional protection. Our results demonstrate how food provisioning can be a central driver of MPA design, offering a pathway to strategically conserve ocean areas while securing seafood for the future.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Segurança Alimentar , Alimentos Marinhos , Animais , Peixes , HumanosRESUMO
Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
RESUMO
We report new records of the fisheries-harvested subtropical greater amberjack Seriola dumerili for the south-east Pacific Ocean. Despite local fishers' asserting that three Seriola morphotypes exist in the region, only one species (the yellowtail amberjack Seriola lalandi) was previously scientifically recorded for Rapa Nui (also known as Easter Island). Whilst we present the first "scientific record", S. dumerili, traditional ecological knowledge suggests that this is likely a pre-existing (albeit transient) species of the Rapa Nui ecoregion. Establishing the existing/historic distributional limits of commercially and ecologically valuable species is key for observing climate-driven distribution shifts, and the inclusion of traditional ecological knowledge is particularly important in areas with relatively lower scientific effort.
Assuntos
Perciformes , Animais , Regiões Antárticas , Pesqueiros , Peixes , PolinésiaRESUMO
Continuing degradation of coral reef ecosystems has generated substantial interest in how management can support reef resilience. Fishing is the primary source of diminished reef function globally, leading to widespread calls for additional marine reserves to recover fish biomass and restore key ecosystem functions. Yet there are no established baselines for determining when these conservation objectives have been met or whether alternative management strategies provide similar ecosystem benefits. Here we establish empirical conservation benchmarks and fish biomass recovery timelines against which coral reefs can be assessed and managed by studying the recovery potential of more than 800 coral reefs along an exploitation gradient. We show that resident reef fish biomass in the absence of fishing (B0) averages â¼1,000 kg ha(-1), and that the vast majority (83%) of fished reefs are missing more than half their expected biomass, with severe consequences for key ecosystem functions such as predation. Given protection from fishing, reef fish biomass has the potential to recover within 35 years on average and less than 60 years when heavily depleted. Notably, alternative fisheries restrictions are largely (64%) successful at maintaining biomass above 50% of B0, sustaining key functions such as herbivory. Our results demonstrate that crucial ecosystem functions can be maintained through a range of fisheries restrictions, allowing coral reef managers to develop recovery plans that meet conservation and livelihood objectives in areas where marine reserves are not socially or politically feasible solutions.
Assuntos
Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Recifes de Corais , Ecossistema , Pesqueiros/métodos , Pesqueiros/estatística & dados numéricos , Peixes/fisiologia , Animais , Biodiversidade , Biomassa , Conservação dos Recursos Naturais/estatística & dados numéricos , Pesqueiros/normas , Herbivoria , Dinâmica Populacional , Comportamento Predatório , Fatores de TempoRESUMO
Coral reefs provide ecosystem goods and services for millions of people in the tropics, but reef conditions are declining worldwide. Effective solutions to the crisis facing coral reefs depend in part on understanding the context under which different types of conservation benefits can be maximized. Our global analysis of nearly 1,800 tropical reefs reveals how the intensity of human impacts in the surrounding seascape, measured as a function of human population size and accessibility to reefs ("gravity"), diminishes the effectiveness of marine reserves at sustaining reef fish biomass and the presence of top predators, even where compliance with reserve rules is high. Critically, fish biomass in high-compliance marine reserves located where human impacts were intensive tended to be less than a quarter that of reserves where human impacts were low. Similarly, the probability of encountering top predators on reefs with high human impacts was close to zero, even in high-compliance marine reserves. However, we find that the relative difference between openly fished sites and reserves (what we refer to as conservation gains) are highest for fish biomass (excluding predators) where human impacts are moderate and for top predators where human impacts are low. Our results illustrate critical ecological trade-offs in meeting key conservation objectives: reserves placed where there are moderate-to-high human impacts can provide substantial conservation gains for fish biomass, yet they are unlikely to support key ecosystem functions like higher-order predation, which is more prevalent in reserve locations with low human impacts.
Assuntos
Biomassa , Conservação dos Recursos Naturais , Recifes de Corais , Peixes/fisiologia , Cadeia Alimentar , Animais , HumanosRESUMO
Animals across vertebrate taxa form social communities and often exist as fission-fusion groups. Central place foragers (CPF) may form groups from which they will predictably disperse to forage, either individually or in smaller groups, before returning to fuse with the larger group. However, the function and stability of social associations in predatory fish acting as CPFs is unknown, as individuals do not need to return to a shelter yet show fidelity to core areas. Using dynamic social networks generated from acoustic tracking data, we document spatially structured sociality in CPF grey reef sharks at a Pacific Ocean atoll. We show that sharks form stable social groups over multiyear periods, with some dyadic associations consistent for up to 4 years. Groups primarily formed during the day, increasing in size throughout the morning before sharks dispersed from the reef at night. Our simulations suggest that multiple individuals sharing a central place and using social information while foraging (i.e. local enhancement) will outperform non-CPF social foragers. We show multiyear social stability in sharks and suggest that social foraging with information transfer could provide a generalizable mechanism for the emergence of sociality with group central place foraging.
Assuntos
Tubarões/fisiologia , Comportamento Social , Acústica , Animais , Recifes de Corais , Ecossistema , Oceano PacíficoRESUMO
Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago-20 anthropogenic and biophysical predictors over 620 survey sites-we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems.
Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Aprendizado de Máquina , Biofísica , Havaí , Modelos BiológicosRESUMO
The most common goatfishes in Hawai'i, Mulloidichthys flavolineatus and M. vanicolensis, comprise a unique resource due to their cultural, ecological and biological significance. These species exhibit pulse-type recruitment to nearshore areas during the summer months. Such pulses of juvenile fishes provide prey for pelagic and nearshore fishes and support a popular directed fishery. However, limited scientific information exists on juvenile stages of these fishes, known locally as oama, despite their contribution to coastal ecology and the extensive nearshore fisheries. Here we resolve growth rates, habitat preferences, hatching dates, size and age structure, as well as fishing catch rates based on new recruits in 2014 and 2015. We sampled 257 M. flavolineatus and 204 M. vanicolensis to compare ecological and fisheries characteristics between species and years. Both show strong habitat segregation, with M. vanicolensis found almost exclusively on hard and M. flavolineatus on soft substrates. Oama recruited in anomalously high numbers in 2014, a trend reflected in a higher catch per unit effort. In contrast, 2015 recruits grew faster, were heavier on average and hatched later than during 2014. Both species have calculated hatch dates in March to July, with M. vanicolensis hatching earlier, recruiting earlier and being consistently larger than M. flavolineatus. This baseline information regarding recruitment and early life-history characteristics can enhance management for other data-limited species that comprise a substantial component of nearshore fisheries in Hawai'i.
Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Peixes/fisiologia , Algoritmos , Distribuição Animal , Animais , Ecossistema , Havaí , Oceano Pacífico , Dinâmica Populacional , Estações do AnoRESUMO
Bonefishes Albula spp. are important components of subsistence fisheries and lucrative sport fishing industries throughout their circumtropical distribution. In Oceania, however, Albula spp. have historically been overexploited and there is a growing need to balance the demands of competing fishing sectors, making the description of their life history a regional priority. To this aim, we collected biological samples from Albula spp. of Anaa atoll, French Polynesia, to identify the species that compose the stock and estimate their life-history parameters including age, growth, reproduction and natural mortality. Our results indicate that Albula glossodonta is the species of bonefish present, with a maximum age that is below the, 20 year longevity of the genus (8 years in males and 10 years in females). Differential growth patterns existed between the two sexes (L∞ = 58, 78 cm fork length (LF ) and K = 0.38, 0.21 for males and females, respectively). Males attained sexual maturity at 43 cm LF (c. 3 years) whereas females matured at 48 cm LF (c. 4 years) and oocyte production was significantly related to body mass, with a maximum batch fecundity of 1,133,767 oocytes in a 4406 g (70 cm LF ) female. The gonado-somatic index of harvested fishes indicated that the spawning season extends from March through September. Based on the observation of a, 20 year bonefish at the proximate Tetiaroa Atoll and several empirical models, estimates of natural mortality ranged from 0.21 to 0.68; however, an estimate of 0.21 was deemed most appropriate. This information facilitated the resurgence of a Rahui (temporary fishing closure) and community-based management to protect A. glossodonta during a critical portion of their spawning season and in this context our results provide an important demographic baseline in evaluating the recovery of this fishery.
Assuntos
Peixes/fisiologia , Características de História de Vida , Animais , Feminino , Fertilidade , Pesqueiros , Longevidade , Masculino , Oceania , Oócitos , Reprodução , Estações do AnoRESUMO
Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social-ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans.