Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Soft Matter ; 16(9): 2266-2275, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039413

RESUMO

The encapsulation of small hydrophilic molecules and response to specific biological triggers in a controlled manner have become two of the significant challenges in biomedical research, in particular in the field of localized drug delivery and biosensing. This work reports the fabrication of free-standing microchamber array films made of biodegradable polymers for the encapsulation and enzymatically triggered release of small hydrophilic molecules. Polycaprolactone (PCL) microchamber arrays were demonstrated to fully biodegrade within 5 hours of exposure to lipase from Pseudomonas cepacia (lipase PS) at a concentration of 0.5 mg ml-1, with lower concentrations producing correspondingly longer degradation times. The gradual process of deterioration was real-time monitored utilising laser Fraunhofer diffraction patterns. Additionally, a small hydrophilic molecule, 5(6)-carboxyfluorescein (CF), was loaded into the PCL microchamber arrays in a dry state; however, the substantial permeability of the PCL film led to leakage of the dye molecules. Consequently, polylactic acid (PLA) was blended with PCL to reduce its permeability, enabling blended PCL-PLA (1 : 2 ratio correspondingly) microchamber arrays to trap the small hydrophilic molecule CF. PCL-PLA (1 : 2) microchamber arrays hold potential for controlled release under the catalysis of lipase within 26 hours. Additionally, it is calculated that approximately 11 pg of CF dye crystals was loaded into individual microchambers of 10 µm size, indicating that the microchamber array films could yield a highly efficient encapsulation.


Assuntos
Proteínas de Bactérias/química , Fluoresceínas/química , Lipase/química , Poliésteres/química , Burkholderia cepacia/enzimologia , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Interações Hidrofóbicas e Hidrofílicas
2.
Langmuir ; 34(40): 11933-11942, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125507

RESUMO

Polyelectrolyte multilayer (PEM) are thin polymeric films produced by alternating adsorption of positively and negatively charged polyelectrolytes (PE) on a substrate. These films are considered drug delivery agents as well as coating material for implants, due to their antibiofouling and biologically benign properties. For these reasons the film mechanical properties as well as response to mechanical stress are important measurement parameters. Especially intriguing is the correlation of the mechanical properties of PEM on macroscopic level with the structure of PEM on molecular level, which is addressed here for the first time. This study investigates PEM from PDADMA/PSS produced by spraying technique with neutron and X-ray reflectometry. Reflectometry technique provides precise information on thickness and density (i.e., electron density or scattering length density, respectively), and, this way, allows to conclude on changes in film composition. Thus, neutron and X-ray reflectometry technique is suitable to investigate the overall and the internal transformations, which PEM films might undergo upon exposure to mechanical load. During uniaxial elongation two regimes of PEM-deformation can be observed: An elastic regime at small elongations (below ca. 0.2%), which is characterized by a reversible change of film thickness, and a plastic regime with a permanent change above this limit. Both regimes have in common, that the mechanical load induces an increase of the film thickness, which is accompanied by an uptake of water from the surrounding atmosphere. The strain causes a molecular rearrangement within the PEM-structure of stratified layers, which, even in elastic regime, is permanent, although the thickness change remains reversible.

3.
Macromol Rapid Commun ; 38(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370668

RESUMO

Cell transport is important to renew body functions and organs with stem cells, or to attack cancer cells with immune cells. The main hindrances of this method are the lack of understanding of cell motion as well as proper transport systems. In this publication, bubble-propelled polyelectrolyte microplates are used for controlled transport and guidance of HeLa cells. Cells survive attachment on the microplates and up to 22 min in 5% hydrogen peroxide solution. They can be guided by a magnetic field whereby increased friction of cells attached to microplates decreases the speed by 90% compared to pristine microplates. The motion direction of the cell-motor system is easier to predict due to the cell being opposite to the bubbles.


Assuntos
Movimento Celular , Movimento (Física) , Catálise , Células HeLa , Humanos , Peróxido de Hidrogênio , Campos Magnéticos
4.
Phys Chem Chem Phys ; 19(3): 2008-2016, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28009025

RESUMO

Lipid bilayer membranes supported on polyelectrolyte multilayers are widely used as a new biomembrane model that connects biological and artificial materials since these ultrathin polyelectrolyte supports may mimic the role of the extracellular matrix and cell skeleton in living systems. Polyelectrolyte multilayers were fabricated by a layer-by-layer self-assembly technique. A quartz crystal microbalance with dissipation was used in real time to monitor the interaction between phospholipids and polyelectrolytes in situ on a planar substrate. The surface properties of polyelectrolyte films were investigated by the measurement of contact angles and zeta potential. Phospholipid charge, buffer pH and substrate hydrophilicity were proved to be essential for vesicle adsorption, rupture, fusion and formation of continuous lipid bilayers on the polyelectrolyte multilayers. The results clearly demonstrated that only the mixture of phosphatidylcholine and phosphatidic acid (4 : 1) resulted in fluid bilayers on chitosan and alginate multilayers with chitosan as a top layer at pH 6.5. A coarse-grained molecular simulation study elucidated that the exact mechanism of the formation of fluid lipid bilayers resembles a "parachute" model. As the closest model to the real membrane, polyelectrolyte multilayer-cushioned fluid lipid bilayers can be appropriate candidates for application in biomedical fields.

5.
Langmuir ; 32(15): 3637-44, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27023433

RESUMO

Polyelectrolyte multilayer (PEM) capsules are promising candidates for many kinds of cancer detection and treatment but are usually intended to deliver cargo to specific sites or to destroy cancer cells based on photothermal effects from the outside. In this publication we prove that it is possible to kill cancer cells from the inside based on phagocytosed PEM capsules. In addition we show how to open the cells and bring the PEM capsules to the surface of cancer cells based on photothermal effects and rapid evaporation of water. Diffusion-based temperature determinations of the photothermal effect up to the evaporation temperature of water are presented.


Assuntos
Antineoplásicos/química , Membrana Celular/química , Ouro/química , Nanopartículas Metálicas/química , Monócitos/química , Polieletrólitos/química , Adsorção , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Cápsulas , Carbocianinas/química , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/efeitos da radiação , Fagocitose , Fototerapia , Poliaminas/química , Poliestirenos/química , Propídio/química
6.
Phys Chem Chem Phys ; 18(5): 3397-401, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26780851

RESUMO

This communication sheds light on the production method and motion patterns of autonomous moving bubble propelled two dimensional micro-plate motors. The plate motors are produced by the well-known layer-by-layer self-assembly process in combination with micro-contact printing. The motion analysis covers instances of oscillating bubble development on one or more nucleation sites, which influence the motion speed and direction.

7.
Macromol Rapid Commun ; 36(15): 1444-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26096613

RESUMO

Gold nanoshell-functionalized polymer multilayer tubes can be used as potent therapeutic agents for remote killing of cancer cells in a controlled manner due to the emerging pressure wave and tube fragments piercing the cell wall. The explosion is based on rapid evaporation of water inside the tubes caused by photothermal effects. The mechanism of explosion is presented in theory and experiment. The explosion of the tubes depends on the absorption coefficient and size of the gold nanoshells in the tubes, whereby the placement of the gold particles inside or outside of the tubes has no obvious effect on the explosive properties.


Assuntos
Polímeros/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanoconchas , Polímeros/farmacologia
8.
Phys Chem Chem Phys ; 17(5): 3281-6, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25521939

RESUMO

In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.


Assuntos
Cápsulas/química , Eletrólitos/química , Ouro/química , Lasers , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Temperatura
9.
J Nanosci Nanotechnol ; 14(6): 4341-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738394

RESUMO

Biofouling is one of the biggest problems of water-borne systems. Since not only marine but also freshwater-based structures are affected, the biofouling in this environment is studied. The focus of this study lies on the antifouling properties of novel coating materials like polyelectrolyte multilayers (PEM) compared with currently used silicon rubber (PDMS) based fouling release coatings. The following article contains the results of a systematical screening of the mechanical, surface charge and surface nano-heterogeneous properties of the investigated PEM and PDMS systems. The results show that negatively charged non crosslinked and crosslinked PEM coated PDMS can surpass current PDMS based fouling release coatings. The PEM films are not only able to reduce the biofouling, but are additionally able to control the type of settled bacteria (gram positive or negative). The negative terminated surfaces inhibit the settlement of gram positive bacteria, whereby the positive terminated surfaces inhibit the settlement of gram negative bacteria.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Eletrólitos/química , Água Doce/microbiologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ecossistema , Teste de Materiais , Tamanho da Partícula , Microbiologia da Água
10.
Phys Chem Chem Phys ; 15(2): 483-8, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23172557

RESUMO

Polyelectrolyte multilayers (PEMs) deposited on flexible supports are promising candidates for many applications ranging from controlled wettability over stimuli responsive nanovalves to lithography free surface structuring. Since many potential applications involve elongation of these films, we investigated the effect of elongation on the PEM thickness and density with ellipsometry. To our surprise PEM films with known amorphous internal structure show auxetic behavior that depends on the PEM preparation condition. The measured refractive index was compared with simulated values using the Garnet equation to evaluate if the incorporation of water or air causes the observed phenomena.


Assuntos
Eletrólitos/química , Polímeros/química , Cloretos/química , Modelos Moleculares , Polietilenoimina/química , Poliestirenos/química , Refratometria , Água/química , Molhabilidade
11.
ACS Omega ; 8(12): 11318-11325, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008110

RESUMO

Drug carriers have been designed and investigated remarkably due to their effective use in the modern medication process. In this study, the decoration of the Mg12O12 nanocluster has been done with transition metals (Ni and Zn) for effective adsorption of metformin (anticancer drug). Decoration of Ni and Zn on a nanocluster allows two geometries, and similarly, the adsorption of metformin also provides two geometries. Density functional theory and time-dependent density functional theory have been employed at the B3LYP with 6-311G(d,p) level. The decoration of Ni and Zn offers good attachment and detachment of the drug, which is observed from their good adsorption energy values. Further, the reduction in the energy band gap is noted in the metformin-adsorbed nanocluster, which allows high charge transfer from a lower energy level to a high energy level. The drug carrier systems show an efficient working mechanism in a water solvent with the visible-light absorption range. Natural bonding orbital and dipole moment values suggested that the adsorption of the metformin causes charge separation in these systems. Moreover, low values of chemical softness with a high electrophilic index recommended that these systems are naturally stable with the least reactivity. Thus, we offer novel kinds of Ni- and Zn-decorated Mg12O12 nanoclusters as efficient carriers for metformin and also recommend them to experimentalists for the future development of drug carriers.

12.
Biomimetics (Basel) ; 8(5)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754195

RESUMO

A promising method for improving the functional properties of calcium-phosphate coatings is the incorporation of various antibacterial additives into their structure. The microbial contamination of a superficial wound is inevitable, even if the rules of asepsis and antisepsis are optimally applied. One of the main problems is that bacteria often become resistant to antibiotics over time. However, this does not apply to certain elements, chemical compounds and drugs with antimicrobial properties. In this study, the fabrication and properties of zinc-containing calcium-phosphate coatings that were formed via micro-arc oxidation from three different electrolyte solutions are investigated. The first electrolyte is based on calcium oxide, the second on hydroxyapatite and the third on calcium acetate. By adding zinc oxide to the three electrolyte solutions, antibacterial properties of the coatings are achieved. Although the same amount of zinc oxide has been added to each electrolyte solution, the zinc concentration in the coatings obtained vary greatly. Furthermore, this study investigates the morphology, structure and chemical composition of the coatings. The antibacterial properties of the zinc-containing coatings were tested toward three strains of bacteria-Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Coatings of calcium acetate and zinc oxide contained the highest amount of zinc and displayed the highest zinc release. Moreover, coatings containing hydroxyapatite and zinc oxide show the highest antibacterial activity toward Pseudomonas aeruginosa, and coatings containing calcium acetate and zinc oxide show the highest antibacterial activities toward Staphylococcus aureus and methicillin-resistant Staphylococcus aureus.

13.
Colloids Surf B Biointerfaces ; 218: 112780, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988310

RESUMO

The speed and motion directionality of bubble-propelled micromotors is dependent on bubble lifetime, bubble formation frequency and bubble stabilization. Absence and presence of bubble stabilizing agents should significantly influence speed and propulsion pattern of a micromotor, especially for fast-diffusing molecules like hydrogen. This study demonstrates a fully biodegradable Janus structured micromotor, propelled by hydrogen bubbles generated by the chemical reaction between hydrochloric acid and magnesium. Six different concentrations of hydrochloric acid and five different concentrations of the surfactant Triton X-100 were tested, which also cover the critical micelle concentration at a pH corresponding to an empty stomach. The Janus micromotor reverses its propulsion direction depending on the availability and concentration of a surfactant. Upon surfactant-free condition, the Janus micromotor is propelled by bubble cavitation, causing the micromotor to be pulled at high speed for short time intervals into the direction of the imploding bubble and thus backwards. In case of available surfactant above the critical micelle concentration, the Janus micromotor is pushed forward by the generated bubbles, which emerge at high frequency and form a bubble trail. The finding of the propulsion direction reversal effect demonstrates the importance to investigate the motion properties of artificial micromotors in a variety of different environments prior to application, especially with surfactants, since biological media often contain large amounts of surface-active components.


Assuntos
Magnésio , Surfactantes Pulmonares , Excipientes , Ácido Clorídrico , Hidrogênio/química , Micelas , Octoxinol , Tensoativos
14.
J Colloid Interface Sci ; 626: 101-112, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780544

RESUMO

Nowadays, vascular stents are commonly used to treat cardiovascular diseases. This article focuses on the influence of nitrogen doping of titanium dioxide thin films, utilized for coating metallic stents to improve their biological properties and biocompatibility. The hereby-investigated titanium oxide thin films are fabricated by magnetron sputtering in a reactive gas atmosphere consisting of argon and oxygen in the first case and argon, nitrogen and oxygen in the second case. Control of the nitrogen and oxygen gas flow rates, and hence their mixing ratios, allows adjustment of the nitrogen-doping level within the titanium dioxide thin films. A correlation of the thin film internal structure on the in vitro behavior of human mesenchymal stem cells derived from adipose tissue is hereby demonstrated. Different nitrogen doping levels affect the surface energy, the wettability, the cell adhesion and thus the cellular proliferation on top of the thin films. The surface colonization of cells on titanium dioxide thin films decreases up to a nitrogen-doping level of âˆ¼ 3.75 at.%, which is associated with a decreasing polar component of the surface energy. For non-doped titanium dioxide thin films, a weak chondrogenesis of adult human adipose-derived mesenchymal stem cells with lower chondrogenic differentiation compared to glass is observed. An increasing nitrogen-doping level leads to linear increase in the chondrogenic differentiation rate, which is comparable to the control value of uncoated glass. Other investigated differentiated cell types do not display this behavior.


Assuntos
Dióxido de Nitrogênio , Titânio , Argônio , Humanos , Teste de Materiais , Nitrogênio/química , Oxigênio , Stents , Titânio/química , Titânio/farmacologia
15.
J Funct Biomater ; 13(4)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547545

RESUMO

In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them-oxide, another two-calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.

16.
Colloids Surf B Biointerfaces ; 188: 110826, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32007703

RESUMO

Encapsulation of small water soluble molecules is important in a large variety of applications, ranging from medical substance releasing implants in the field of medicine over release of catalytically active substances in the field of chemical processing to anti-corrosion agents in industry. In this work polylactic acid (PLA) based hollow-structured microchamber (MC) arrays are fabricated via one-step dip coating of a silicone rubber stamp into PLA solution. These PLA MCs are able to retain small water soluble molecules (Rhodamine B) stably entrapped within aqueous environments. It is shown, that degradation of PLA MCs strongly depends on environmental conditions like surrounding pH and follows first order degradation kinetics. This pH dependent PLA MC degradation can be utilized to control the release kinetics of encapsulated cargo.


Assuntos
Poliésteres/química , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 12(16): 19080-19091, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32223175

RESUMO

Stimuli-responsive polymers have attracted increasing attention over the years due to their ability to alter physiochemical properties upon external stimuli. However, many stimuli-responsive polymer-based sensors require specialized and expensive equipment, which limits their applications. Here an inexpensive and portable sensing platform of novel microarray films made of stimuli-responsive polymers is introduced for the real-time sensing of various environmental changes. When illuminated by laser light, microarray films generate diffraction patterns that can reflect and magnify variations of the periodical microstructure induced by surrounding invisible parameters in real time. Stimuli-responsive polyelectrolyte complexes are structured into micropillar arrays to monitor the pH variation and the presence of calcium ions based on reversible swelling/shrinking behaviors of the polymers. A pH hysteretic effect of the selected polyelectrolyte pair is determined and explained. Furthermore, polycaprolactone microchamber arrays are fabricated and display a thermal-driven structural change, which is exploited for photonic threshold temperature detection. Experimentally observed diffraction patterns are additionally compared with rigorous coupled-wave analysis simulations that prove that induced diffraction pattern alterations are solely caused by geometrical microstructure changes. Microarray-based diffraction patterns are a novel sensing platform with versatile sensing capabilities that will likely pave the way for the use of microarray structures as photonic sensors.

18.
Mater Sci Eng C Mater Biol Appl ; 110: 110664, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204092

RESUMO

Photosensitive polymeric three-dimensional microstructured film (PTMF) is a new type of patterned polymeric films functionalized with an array of sealed hollow 3D containers. The microstructured system with enclosed chemicals provides a tool for the even distribution of biologically active substances on a given surface that can be deposited on medical implants or used as a cells substrate. In this work, we proposed a way for photothermally activating and releasing encapsulated substances at picogram amounts from the PTMF surface in different environments using laser radiation delivered with a multimode optical fiber. The photosensitive PTMFs were prepared by the layer-by-layer (LbL) assembly from alternatively charged polyelectrolytes followed by covering with a layer of hydrophobic polylactic acid (PLA) and a layer of gold nanoparticles (AuNPs). Moreover, the typical photothermal cargo release amounts were determined on the surface of the PTMF for a range of laser powers delivered to films placed in the air, deionized (DI) water, and 1% agarose gel. The agarose gel was used as a soft tissue model for developing a technique for the laser activation of PTMFs deep in tissues using optical waveguides. The number of PTMF chambers activated by a near-infrared (NIR) laser beam was evaluated as the function of optical parameters.


Assuntos
Liberação Controlada de Fármacos , Lasers , Fibras Ópticas , Polímeros/química , Raios Infravermelhos , Polieletrólitos/química , Eletricidade Estática
19.
Colloids Surf B Biointerfaces ; 173: 521-528, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30340180

RESUMO

Surface mediated drug delivery is important for a large variety of applications, especially in medicine to control cell growth, prevent blood platelet activation on implants or for self-disinfecting devices (e.g. catheters). In industrial applications, controlled release of substances from surfaces is needed in a broad range of applications from anti-corrosion systems to anti-biofouling. Polyelectrolyte multilayers (PEM) based microcontainers (MCs) require several days production time, while MCs composed out of polylactic acid (PLA) are entirely hydrophobic, offering no functionality. We hereby present an approach to fabricate PLA coated synthetic as well as biopolymer based biodegradable polyelectrolyte complex MCs able to encapsulate small hydrophilic cargo within less than one hour. The chambers facilitate laser controlled release of cargo within submerged conditions.


Assuntos
Preparações de Ação Retardada/efeitos da radiação , Poliaminas/química , Polieletrólitos/química , Poliésteres/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Rodaminas/química , Ácido Algínico/química , Quitosana/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lasers , Luz , Tamanho da Partícula , Poliestirenos/química , Temperatura
20.
J Nanosci Nanotechnol ; 19(12): 8052-8062, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196326

RESUMO

Biofouling is a severe problem of any water borne structure. Since the ban of tin-organic compounds and expected bans of other poisonous chemical formulations in the near future, replacement of these compounds are sought. This study investigates antibiofouling properties of micro- and nanostructured alginate layer films. Alginate is a natural product from brown algae and was in this study electro-sprayed and crosslinked with divalent calcium and copper ions to produce homogeneous micro- and nanoparticles. These calcium- and copper-alginate particles were assembled into micro- and nanostructured layer films and the antifouling properties of these low elastic modulus, hydrophilic, biodegradable system were evaluated with the microalgae chlorella. Comparison with pristine glass slides, smooth copper- and calcium alginate bulk films was performed. The comparison shows less biofouling for smooth bulk films compared to micro-nanostructured alginate, while all alginate systems are less bio-fouled on long timescales compared to pristine glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA