Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropediatrics ; 50(1): 61-63, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30541163

RESUMO

X-linked myotubular myopathy (XLMTM) is a rare inherited neuromuscular disorder associated with mutations in the MTM1 gene on the Xq28 region. We report a severely affected girl with XLMTM, caused by maternally inherited 661 kb Xq28 microduplication identified by chromosomal microarray analysis and confirmed also on DNA from muscle biopsy with a custom-designed X-chromosome-specific microarray. X-inactivation analysis revealed a skewed inactivation pattern on the proband's muscle biopsy. Muscle biopsy histopathology was indicative of increased variability in fiber diameter, marked and diffuse endomysial proliferation of adipose and connective tissues, as well as predominance of type 1 fibers.


Assuntos
Duplicação Cromossômica/genética , Cromossomos Humanos X/genética , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Criança , Feminino , Humanos
2.
Pediatr Res ; 82(2): 253-260, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28422950

RESUMO

BackroundMicrocephaly can either be isolated or it may coexist with other neurological entities and/or multiple congenital anomalies, known as syndromic microcephaly. Although many syndromic cases can be classified based on the characteristic phenotype, some others remain uncertain and require further investigation. The present study describes the application of array-comparative genomic hybridization (array-CGH) as a diagnostic tool for the study of patients with clinically unknown syndromic microcephaly.MethodsFrom a cohort of 210 unrelated patients referred with syndromic microcephaly, we applied array-CGH analysis in 53 undiagnosed cases. In all the 53 cases except one, previous standard karyotype was negative. High-resolution 4 × 180K and 1 × 244K Agilent arrays were used in this study.ResultsIn 25 out of the 53 patients with microcephaly among other phenotypic anomalies, array-CGH revealed copy number variations (CNVs) ranging in size between 15 kb and 31.6 Mb. The identified CNVs were definitely causal for microcephaly in 11/53, probably causal in 7/53, and not causal for microcephaly in 7/53 patients. Genes potentially contributing to brain deficit were revealed in 16/53 patients.ConclusionsArray-CGH contributes to the elucidation of undefined syndromic microcephalic cases by permitting the discovery of novel microdeletions and/or microduplications. It also allows a more precise genotype-phenotype correlation by the accurate definition of the breakpoints in the deleted/duplicated regions.


Assuntos
Hibridização Genômica Comparativa/métodos , Microcefalia/genética , Criança , Estudos de Coortes , Feminino , Humanos , Cariotipagem , Masculino , Síndrome
3.
Genome Res ; 23(9): 1410-21, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23783273

RESUMO

Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de Down/diagnóstico , Cardiopatias Congênitas/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Cromossomos Humanos Par 21/genética , Proteínas de Ligação a DNA/genética , Síndrome de Down/complicações , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Cardiopatias Congênitas/etiologia , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Fatores de Transcrição/genética
4.
Am J Med Genet A ; 170A(5): 1333-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26898171

RESUMO

Kabuki syndrome is a genetic condition characterized by distinctive facial phenotype, mental retardation, and internal organ malformations. Mutations of the epigenetic genes KMT2D and KDM6A cause dysregulation of certain developmental genes and account for the multiple congenital anomalies of the syndrome. Eight cases of malignancies have been reported in young patients with Kabuki syndrome although a causative association to the syndrome has not been established. We report a case of a 12-year-old girl with Kabuki syndrome who developed a tumor on the right side of her neck. A relapsing tumor 19 months after initial excision, proved to be giant cell fibroblastoma. Τhis is the first report of giant cell fibroblastoma -a rare tumor of childhood- in a patient with Kabuki syndrome.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Dermatofibrossarcoma/genética , Face/anormalidades , Doenças Hematológicas/genética , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/fisiopatologia , Anormalidades Múltiplas/cirurgia , Criança , Dermatofibrossarcoma/etiologia , Dermatofibrossarcoma/fisiopatologia , Dermatofibrossarcoma/cirurgia , Face/fisiopatologia , Face/cirurgia , Feminino , Genótipo , Doenças Hematológicas/complicações , Doenças Hematológicas/fisiopatologia , Doenças Hematológicas/cirurgia , Humanos , Deficiência Intelectual , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/fisiopatologia , Recidiva Local de Neoplasia/cirurgia , Doenças Vestibulares/complicações , Doenças Vestibulares/fisiopatologia , Doenças Vestibulares/cirurgia
5.
medRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39006436

RESUMO

Transmembrane protein 184B (TMEM184B) is an endosomal 7-pass transmembrane protein with evolutionarily conserved roles in synaptic structure and axon degeneration. We report six pediatric patients who have de novo heterozygous variants in TMEM184B. All individuals harbor rare missense or mRNA splicing changes and have neurodevelopmental deficits including intellectual disability, corpus callosum hypoplasia, seizures, and/or microcephaly. TMEM184B is predicted to contain a pore domain, wherein many human disease-associated variants cluster. Structural modeling suggests that all missense variants alter TMEM184B protein stability. To understand the contribution of TMEM184B to neural development in vivo, we suppressed the TMEM184B ortholog in zebrafish and observed microcephaly and reduced anterior commissural neurons, aligning with patient symptoms. Ectopic TMEM184B expression resulted in dominant effects for K184E and G162R. However, in vivo complementation studies demonstrate that all other variants tested result in diminished protein function and indicate a haploinsufficiency basis for disease. Expression of K184E and other variants increased apoptosis in cell lines and altered nuclear localization of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, suggesting disrupted nutrient signaling pathways. Together, our data indicate that TMEM184B variants cause cellular metabolic disruption likely through divergent molecular effects that all result in abnormal neural development.

6.
Eur J Med Genet ; 65(8): 104537, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690317

RESUMO

Transcriptional coregulators modulate the efficiency of transcription factors. Bi-allelic variants in TRIP4 and ASCC1, two genes that encode members of the tetrameric coregulator ASC-1, have recently been associated with congenital bone fractures, hypotonia, and muscular dystrophy in a total of 22 unrelated families. Upon exome sequencing and data repository mining, we identified six new patients with pathogenic homozygous variants in either TRIP4 (n = 4, two novel variants) or ASCC1 (n = 2, one novel variant). The associated clinical findings confirm and extend previous descriptions. Considering all patients reported to date, we provide supporting evidence suggesting that ASCC1-related disease has a more severe phenotype compared to TRIP4-related disorder regarding higher incidence of perinatal bone fractures and shorter survival.


Assuntos
Fraturas Ósseas , Doenças Musculares , Malformações do Sistema Nervoso , Proteínas de Transporte/genética , Fraturas Ósseas/genética , Homozigoto , Humanos , Doenças Musculares/genética , Mutação , Fenótipo , Fatores de Transcrição/genética , Sequenciamento do Exoma
7.
J Hum Genet ; 55(11): 761-3, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20686492

RESUMO

Phenotypic variation in CHARGE syndrome remains unexplained. A subcategory of CHARGE patients show overlapping phenotypic characteristics with DiGeorge syndrome (thymic hypo/aplasia, hypocalcemia, T-cell immunodeficiency). Very few have been tested or reported to carry a mutation of the CHD7 (chromodomain helicase DNA-binding domain) gene detected in two-thirds of CHARGE patients. In an attempt to explore the genetic background of a severe CHARGE/DiGeorge phenotype, we performed comparative genomic array hybridization in an infant carrier of a CHD7 mutation. The high-resolution comparative genomic array hybridization revealed interesting findings, including a deletion distal to the DiGeorge region and disruptions in other chromosomal regions of genes implicated in immunological and other functions possibly contributing to the patient's severe phenotype and early death.


Assuntos
Síndrome CHARGE , Hibridização Genômica Comparativa/métodos , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Síndrome de DiGeorge , Mutação/genética , Deleção de Sequência/genética , Síndrome CHARGE/genética , Síndrome CHARGE/imunologia , Síndrome CHARGE/patologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/imunologia , Síndrome de DiGeorge/patologia , Evolução Fatal , Humanos , Lactente , Masculino , Fenótipo , Proteínas/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia
8.
Mol Syndromol ; 8(4): 206-210, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28690487

RESUMO

Cantú syndrome is a very rare autosomal dominant disorder characterized by generalized congenital hypertrichosis, neonatal macrosomia, coarse face, cardiomegaly, and occasionally, skeletal abnormalities. The syndrome has been attributed to mutated ABCC9 or KCNJ8 genes. We present a 4-year-old girl with developmental delay, distinctive coarse facial features, and generalized hypertrichosis apparent since birth. The investigation revealed absent ovaries and a hypoplastic uterus which have not been previously described. Conventional karyotyping was normal. DNA sequencing analysis of the ABCC9 gene was performed, and a heterozygous point mutation c.3460C>T (p.Arg1154Trp) was revealed. This missense gain-of-function mutation was located in exon 27 of the ABCC9 gene and has been reported in patients with the full phenotype of Cantú syndrome. However, the absence of the ovaries could be an expansion of the phenotype and not attributed to mutations in other genes important for ovarian development. Unfortunately, it has not been proven so far if the ABCC9 gene is expressed in the ovarian tissue.

9.
J Clin Endocrinol Metab ; 97(12): E2328-38, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23043190

RESUMO

CONTEXT: Acrodysostosis is a rare skeletal dysplasia that is associated with multiple resistance to G protein-coupled receptor (GPCR) signaling hormones in a subset of patients. Acrodysostosis is genetically heterogeneous because it results from heterozygous mutations in PRKAR1A or PDE4D, two key actors in the GPCR-cAMP-protein kinase A pathway. OBJECTIVE: Our objective was to identify the phenotypic features that distinguish the two genotypes causing acrodysostosis. PATIENTS AND METHODS: Sixteen unrelated patients with acrodysostosis underwent a candidate-gene approach and were investigated for phenotypic features. RESULTS: All patients had heterozygous de novo mutations. Fourteen patients carried a PRKAR1A mutation (PRKAR1A patients), five each a novel PRKAR1A mutation (p.Q285R, p.G289E, p.A328V, p.R335L, or p.Q372X), nine the reported PRKAR1A p.R368X mutation; two patients harbored a mutation in PDE4D (PDE4D patients) (one novel mutation, p.A227S; one reported, p.E590A). All PRKAR1A, but none of the PDE4D mutated patients were resistant to PTH and TSH. Two PRKAR1A patients each with a novel mutation presented a specific pattern of brachydactyly. One PDE4D patient presented with acroskyphodysplasia. Additional phenotypic differences included mental retardation in PDE4D patients. In addition, we report the presence of pigmented skin lesions in PRKAR1A and PDE4D patients, a feature not yet described in the acrodysostosis entity. CONCLUSIONS: All PRKAR1A and PDE4D patients present similar bone dysplasia characterizing acrodysostosis. Phenotypic differences, including the presence of resistance to GPCR-cAMP signaling hormones in PRKAR1A but not PDE4D patients, indicate phenotype-genotype correlations and highlight the specific contributions of PRKAR1A and PDE4D in cAMP signaling in different tissues.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Resistência a Medicamentos/genética , Disostoses/complicações , Disostoses/genética , Hormônios , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/genética , Adolescente , Adulto , Criança , Pré-Escolar , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Técnicas de Diagnóstico Endócrino , Disostoses/diagnóstico , Feminino , Hormônios/metabolismo , Hormônios/farmacologia , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Osteocondrodisplasias/diagnóstico , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Síndrome , Síndrome da Resistência aos Hormônios Tireóideos/complicações , Síndrome da Resistência aos Hormônios Tireóideos/diagnóstico , Síndrome da Resistência aos Hormônios Tireóideos/genética , Adulto Jovem
10.
Mol Cell Probes ; 19(6): 422-4, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16144755

RESUMO

Although the facioscapulohumeral muscular dystrophy (FSHD) locus was mapped to 4q35 chromosomal region in 1990, no gene transcript has been as yet identified. Molecular diagnosis is based mainly on the detection of deletions of a 3.3 kb-tandem repeat array in the locus. This procedure offers almost 95% accuracy but is quite complicated and therefore a simpler test would be preferable. We describe a convenient non-radioactive protocol which requires a simple PCR probe synthesis and labelling procedure, thus facilitating and accelerating the standard Southern blot based DNA test. 134 individuals (113 affected and 21 unaffected relatives) were studied and a causal deletion was detected in 72.


Assuntos
Sondas de DNA , Técnicas de Diagnóstico Molecular , Distrofia Muscular Facioescapuloumeral/diagnóstico , Southern Blotting/métodos , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA