Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(20): 5213-5216, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831830

RESUMO

In this Letter, we report the application of planar liquid crystal (LC) devices in axial focus shaping, proving that LC diffractive optical elements (DOEs) can achieve continuous adjustment of a symmetrical axial light field by changing the ellipticity of the incident light and can flexibly and quickly achieve various axial light field designs through an axial iterative Fourier transform algorithm. The LC DOE achieves a quasi-continuous phase and an extremely high transmittance (98.6% at 1030 nm), which makes the focusing efficiency of the LC DOE with two segments of uniform focal depths as high as 84%. The experimental results demonstrate the accurate optical field shaping effect and the axial intensity adjustable ability of LC DOE, indicating potential applications in optical tomography and precision manufacturing, among others.

2.
Elife ; 122024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234821

RESUMO

Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While many studies have investigated how color information is processed in visual brain areas of primate species, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of 'predatory'-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species.


Assuntos
Visão de Cores , Córtex Visual , Animais , Camundongos , Visão de Cores/fisiologia , Córtex Visual/fisiologia , Percepção de Cores/fisiologia , Estimulação Luminosa , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Masculino
3.
Cell Rep ; 43(8): 114639, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39167488

RESUMO

A key feature of neurons in the primary visual cortex (V1) of primates is their orientation selectivity. Recent studies using deep neural network models showed that the most exciting input (MEI) for mouse V1 neurons exhibit complex spatial structures that predict non-uniform orientation selectivity across the receptive field (RF), in contrast to the classical Gabor filter model. Using local patches of drifting gratings, we identified heterogeneous orientation tuning in mouse V1 that varied up to 90° across sub-regions of the RF. This heterogeneity correlated with deviations from optimal Gabor filters and was consistent across cortical layers and recording modalities (calcium vs. spikes). In contrast, model-synthesized MEIs for macaque V1 neurons were predominantly Gabor like, consistent with previous studies. These findings suggest that complex spatial feature selectivity emerges earlier in the visual pathway in mice than in primates. This may provide a faster, though less general, method of extracting task-relevant information.


Assuntos
Córtex Visual Primário , Animais , Camundongos , Córtex Visual Primário/fisiologia , Orientação/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estimulação Luminosa , Masculino , Campos Visuais/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Primatas
4.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333280

RESUMO

Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While we know how color information is processed in visual brain areas of primates, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of mouse natural scenes. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. This type of color-opponency in the receptive field center was not present at the level of the retinal output and, therefore, is likely computed in the cortex by integrating upstream visual signals. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of "predatory"-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species. More broadly, they support the hypothesis that visual cortex combines upstream information towards computing neuronal selectivity to behaviorally-relevant sensory features.

5.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993218

RESUMO

A defining characteristic of intelligent systems, whether natural or artificial, is the ability to generalize and infer behaviorally relevant latent causes from high-dimensional sensory input, despite significant variations in the environment. To understand how brains achieve generalization, it is crucial to identify the features to which neurons respond selectively and invariantly. However, the high-dimensional nature of visual inputs, the non-linearity of information processing in the brain, and limited experimental time make it challenging to systematically characterize neuronal tuning and invariances, especially for natural stimuli. Here, we extended "inception loops" - a paradigm that iterates between large-scale recordings, neural predictive models, and in silico experiments followed by in vivo verification - to systematically characterize single neuron invariances in the mouse primary visual cortex. Using the predictive model we synthesized Diverse Exciting Inputs (DEIs), a set of inputs that differ substantially from each other while each driving a target neuron strongly, and verified these DEIs' efficacy in vivo. We discovered a novel bipartite invariance: one portion of the receptive field encoded phase-invariant texture-like patterns, while the other portion encoded a fixed spatial pattern. Our analysis revealed that the division between the fixed and invariant portions of the receptive fields aligns with object boundaries defined by spatial frequency differences present in highly activating natural images. These findings suggest that bipartite invariance might play a role in segmentation by detecting texture-defined object boundaries, independent of the phase of the texture. We also replicated these bipartite DEIs in the functional connectomics MICrONs data set, which opens the way towards a circuit-level mechanistic understanding of this novel type of invariance. Our study demonstrates the power of using a data-driven deep learning approach to systematically characterize neuronal invariances. By applying this method across the visual hierarchy, cell types, and sensory modalities, we can decipher how latent variables are robustly extracted from natural scenes, leading to a deeper understanding of generalization.

6.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993321

RESUMO

A key role of sensory processing is integrating information across space. Neuronal responses in the visual system are influenced by both local features in the receptive field center and contextual information from the surround. While center-surround interactions have been extensively studied using simple stimuli like gratings, investigating these interactions with more complex, ecologically-relevant stimuli is challenging due to the high dimensionality of the stimulus space. We used large-scale neuronal recordings in mouse primary visual cortex to train convolutional neural network (CNN) models that accurately predicted center-surround interactions for natural stimuli. These models enabled us to synthesize surround stimuli that strongly suppressed or enhanced neuronal responses to the optimal center stimulus, as confirmed by in vivo experiments. In contrast to the common notion that congruent center and surround stimuli are suppressive, we found that excitatory surrounds appeared to complete spatial patterns in the center, while inhibitory surrounds disrupted them. We quantified this effect by demonstrating that CNN-optimized excitatory surround images have strong similarity in neuronal response space with surround images generated by extrapolating the statistical properties of the center, and with patches of natural scenes, which are known to exhibit high spatial correlations. Our findings cannot be explained by theories like redundancy reduction or predictive coding previously linked to contextual modulation in visual cortex. Instead, we demonstrated that a hierarchical probabilistic model incorporating Bayesian inference, and modulating neuronal responses based on prior knowledge of natural scene statistics, can explain our empirical results. We replicated these center-surround effects in the multi-area functional connectomics MICrONS dataset using natural movies as visual stimuli, which opens the way towards understanding circuit level mechanism, such as the contributions of lateral and feedback recurrent connections. Our data-driven modeling approach provides a new understanding of the role of contextual interactions in sensory processing and can be adapted across brain areas, sensory modalities, and species.

7.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993435

RESUMO

Understanding the brain's perception algorithm is a highly intricate problem, as the inherent complexity of sensory inputs and the brain's nonlinear processing make characterizing sensory representations difficult. Recent studies have shown that functional models-capable of predicting large-scale neuronal activity in response to arbitrary sensory input-can be powerful tools for characterizing neuronal representations by enabling high-throughput in silico experiments. However, accurately modeling responses to dynamic and ecologically relevant inputs like videos remains challenging, particularly when generalizing to new stimulus domains outside the training distribution. Inspired by recent breakthroughs in artificial intelligence, where foundation models-trained on vast quantities of data-have demonstrated remarkable capabilities and generalization, we developed a "foundation model" of the mouse visual cortex: a deep neural network trained on large amounts of neuronal responses to ecological videos from multiple visual cortical areas and mice. The model accurately predicted neuronal responses not only to natural videos but also to various new stimulus domains, such as coherent moving dots and noise patterns, underscoring its generalization abilities. The foundation model could also be adapted to new mice with minimal natural movie training data. We applied the foundation model to the MICrONS dataset: a study of the brain that integrates structure with function at unprecedented scale, containing nanometer-scale morphology, connectivity with >500,000,000 synapses, and function of >70,000 neurons within a ~1mm3 volume spanning multiple areas of the mouse visual cortex. This accurate functional model of the MICrONS data opens the possibility for a systematic characterization of the relationship between circuit structure and function. By precisely capturing the response properties of the visual cortex and generalizing to new stimulus domains and mice, foundation models can pave the way for a deeper understanding of visual computation.

8.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36993398

RESUMO

To understand how the brain computes, it is important to unravel the relationship between circuit connectivity and function. Previous research has shown that excitatory neurons in layer 2/3 of the primary visual cortex of mice with similar response properties are more likely to form connections. However, technical challenges of combining synaptic connectivity and functional measurements have limited these studies to few, highly local connections. Utilizing the millimeter scale and nanometer resolution of the MICrONS dataset, we studied the connectivity-function relationship in excitatory neurons of the mouse visual cortex across interlaminar and interarea projections, assessing connection selectivity at the coarse axon trajectory and fine synaptic formation levels. A digital twin model of this mouse, that accurately predicted responses to arbitrary video stimuli, enabled a comprehensive characterization of the function of neurons. We found that neurons with highly correlated responses to natural videos tended to be connected with each other, not only within the same cortical area but also across multiple layers and visual areas, including feedforward and feedback connections, whereas we did not find that orientation preference predicted connectivity. The digital twin model separated each neuron's tuning into a feature component (what the neuron responds to) and a spatial component (where the neuron's receptive field is located). We show that the feature, but not the spatial component, predicted which neurons were connected at the fine synaptic scale. Together, our results demonstrate the "like-to-like" connectivity rule generalizes to multiple connection types, and the rich MICrONS dataset is suitable to further refine a mechanistic understanding of circuit structure and function.

9.
Nat Commun ; 13(1): 6389, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302912

RESUMO

Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase-followed by a prolonged decrease-in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.


Assuntos
Interneurônios , Células Piramidais , Camundongos , Animais , Retroalimentação , Interneurônios/fisiologia , Peptídeo Intestinal Vasoativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA