Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Med ; 22(1): 11, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185631

RESUMO

BACKGROUND: Dilation may be the first right ventricular change and accelerates the progression of threatening ventricular tachyarrhythmias and heart failure for patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), but the treatment for right ventricular dilation remains limited. METHODS: Single-cell RNA sequencing (scRNA-seq) of blood and biventricular myocardium from 8 study participants was performed, including 6 end-stage heart failure patients with ARVC and 2 normal controls. ScRNA-seq data was then deeply analyzed, including cluster annotation, cellular proportion calculation, and characterization of cellular developmental trajectories and interactions. An integrative analysis of our single-cell data and published genome-wide association study-based data provided insights into the cell-specific contributions to the cardiac arrhythmia phenotype of ARVC. Desmoglein 2 (Dsg2)mut/mut mice were used as the ARVC model to verify the therapeutic effects of pharmacological intervention on identified cellular cluster. RESULTS: Right ventricle of ARVC was enriched of CCL3+ proinflammatory macrophages and TNMD+ fibroblasts. Fibroblasts were preferentially affected in ARVC and perturbations associated with ARVC overlap with those reside in genetic variants associated with cardiac arrhythmia. Proinflammatory macrophages strongly interact with fibroblast. Pharmacological inhibition of Nod-like receptor protein 3 (NLRP3), a transcriptional factor predominantly expressed by the CCL3+ proinflammatory macrophages and several other myeloid subclusters, could significantly alleviate right ventricular dilation and dysfunction in Dsg2mut/mut mice (an ARVC mouse model). CONCLUSIONS: This study provided a comprehensive analysis of the lineage-specific changes in the blood and myocardium from ARVC patients at a single-cell resolution. Pharmacological inhibition of NLRP3 could prevent right ventricular dilation and dysfunction of mice with ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita , Insuficiência Cardíaca , Humanos , Animais , Camundongos , Displasia Arritmogênica Ventricular Direita/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/genética , Arritmias Cardíacas , Análise de Sequência de RNA
2.
Arterioscler Thromb Vasc Biol ; 43(11): 2143-2164, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37706320

RESUMO

BACKGROUND: Perivascular adipose tissue (PVAT) is vital for vascular homeostasis, and PVAT dysfunction is associated with increased atherosclerotic plaque burden. But the mechanisms underlining coronary PVAT dysfunction in coronary atherosclerosis remain elusive. METHODS: We performed single-cell RNA sequencing of the stromal vascular fraction of coronary PVAT from 3 groups of heart transplant recipients with end-stage heart failure, including 3 patients with nonobstructive coronary atherosclerosis, 3 patients with obstructive coronary artery atherosclerosis, and 4 nonatherosclerosis control subjects. Bioinformatics was used to annotate the cellular populations, depict the cellular developmental trajectories and interactions, and explore the differences among 3 groups of coronary PVAT at the cellular and molecular levels. Pathological staining, quantitative real-time polymerase chain reaction, and in vitro studies were performed to validate the key findings. RESULTS: Ten cell types were identified among 67 936 cells from human coronary PVAT. Several cellular subpopulations, including SPP1+ (secreted phosphoprotein 1) macrophages and profibrotic fibroadipogenic progenitor cells, were accumulated in PVAT surrounding atherosclerotic coronary arteries compared with nonatherosclerosis coronary arteries. The fibrosis percentage was increased in PVAT surrounding atherosclerotic coronary arteries, and it was positively associated with the grade of coronary artery stenosis. Cellular interaction analysis suggested OPN (osteopontin) secreted by SPP1+ macrophages interacted with CD44 (cluster of differentiation 44)/integrin on fibroadipogenic progenitor cells. Strikingly, correlation analyses uncovered that higher level of SPP1 in PVAT correlates with a more severe fibrosis degree and a higher coronary stenosis grade. In vitro studies showed that conditioned medium from atherosclerotic coronary PVAT promoted the migration and proliferation of fibroadipogenic progenitor cells, while such effect was prevented by blocking CD44 or integrin. CONCLUSIONS: SPP1+ macrophages accumulated in the PVAT surrounding atherosclerotic coronary arteries, and they promoted the migration and proliferation of fibroadipogenic progenitor cells via OPN-CD44/integrin interaction and thus aggravated the fibrosis of coronary PVAT, which was positively correlated to the coronary stenosis burden. Therefore, SPP1+ macrophages in coronary PVAT may participate in the progression of coronary atherosclerosis.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Estenose Coronária , Insuficiência Cardíaca , Humanos , Doença da Artéria Coronariana/patologia , Osteopontina/genética , Osteopontina/metabolismo , Tecido Adiposo/metabolismo , Aterosclerose/patologia , Estenose Coronária/patologia , Macrófagos/metabolismo , Fibrose , Integrinas/metabolismo , Análise de Sequência de RNA , Insuficiência Cardíaca/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 42(12): 1429-1446, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36200446

RESUMO

BACKGROUND: Exploring the mechanisms of valvular heart disease at the cellular level may be useful to identify new therapeutic targets; however, the comprehensive cellular landscape of nondiseased human cardiac valve leaflets remains unclear. METHODS: The cellular landscapes of nondiseased human cardiac valve leaflets (5 aortic valves, 5 pulmonary valves, 5 tricuspid valves, and 3 mitral valves) from end-stage heart failure patients undergoing heart transplantation were explored using single-cell RNA sequencing. Bioinformatics was used to identify the cell types, describe the cell functions, and investigate cellular developmental trajectories and interactions. Differences among the 4 types of cardiac valves at the cellular level were summarized. Pathological staining was performed to validate the key findings of single-cell RNA sequencing. An integrative analysis of our single-cell data and published genome-wide association study-based and bulk RNA sequencing-based data provided insights into the cell-specific contributions to calcific aortic valve diseases. RESULTS: Six cell types were identified among 128 412 cells from nondiseased human cardiac valve leaflets. Valvular interstitial cells were the largest population, followed by myeloid cells, lymphocytes, valvular endothelial cells, mast cells, and myofibroblasts. The 4 types of cardiac valve had distinct cellular compositions. The intercellular communication analysis revealed that valvular interstitial cells were at the center of the communication network. The integrative analysis of our single-cell RNA sequencing data revealed key cellular subpopulations involved in the pathogenesis of calcific aortic valve diseases. CONCLUSIONS: The cellular landscape differed among the 4 types of nondiseased cardiac valve, which might explain their differences in susceptibility to pathological remodeling and valvular heart disease.


Assuntos
Estenose da Valva Aórtica , Calcinose , Insuficiência Cardíaca , Doenças das Valvas Cardíacas , Humanos , Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Calcinose/metabolismo , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Células Cultivadas , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/cirurgia , Doenças das Valvas Cardíacas/complicações , Insuficiência Cardíaca/metabolismo
4.
Am J Physiol Endocrinol Metab ; 319(1): E217-E231, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516026

RESUMO

We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.


Assuntos
Quimiotaxia de Leucócito/imunologia , Vesículas Extracelulares/imunologia , Doenças das Valvas Cardíacas/imunologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Rim/imunologia , Neutrófilos/imunologia , Insuficiência Renal/imunologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Adulto , Animais , Estudos de Casos e Controles , Quimiocina CCL5/efeitos dos fármacos , Quimiocina CCL5/imunologia , Quimiocina CCL5/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Dexmedetomidina/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Proteína Forkhead Box O3/efeitos dos fármacos , Proteína Forkhead Box O3/imunologia , Proteína Forkhead Box O3/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Fosforilação , Fator Plaquetário 4/efeitos dos fármacos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal/metabolismo , Vasodilatação
5.
Arterioscler Thromb Vasc Biol ; 39(8): 1629-1644, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189430

RESUMO

OBJECTIVE: Periaortic arch adipose tissue (PAAT) plays critical roles in regulating vascular homeostasis; however, its anatomic features, developmental processes, and origins remain unclear. Approach and Results: Anatomic analysis and genetic lineage tracing of Wnt1 (wingless-type MMTV [mouse mammary tumor virus] integration site family member 1)-Cre+;Rosa26RFP/+ mice, Myf5 (myogenic factor 5)-Cre+;Rosa26RFP/+ mice, and SM22α-Cre+;Rosa26RFP/+ mice are performed, and the results show that PAAT has unique anatomic features, and the developmental processes of PAAT are independent of the others periaortic adipose tissues. PAAT adipocytes are mainly derived from neural crest cells (NCCs) rather than from Myf5+ progenitors. Most PAAT adipocyte progenitors expressed SM22α+ (smooth muscle protein 22-alpha) during development. Using Wnt1-Cre+;PPARγflox/flox mice, we found that knockout of PPAR (peroxisome proliferator-activated receptor)-γ in NCCs results in PAAT developmental delay and dysplasia, further confirming that NCCs contribute to PAAT formation. And we further indicated PAAT dysplasia aggravates Ang II (angiotensin II)-induced inflammation and remodeling of the common carotid artery close to aorta arch. We also found that NCCs can be differentiated into both brown and white adipocytes in vivo and in vitro. RNA sequencing results suggested NCC-derived adipose tissue displays a distinct transcriptional profile compared with the non-NCC-derived adipose tissue in PAAT. CONCLUSIONS: PAAT has distinctive anatomic features and developmental processes. Most PAAT adipocytes are originated from NCCs which derive from ectoderm. NCCs are progenitors not only of white adipocytes but also of brown adipocytes. This study indicates that the PAAT is derived from multiple cell lineages, the adipocytes derived from different origins have distinct transcriptional profiles, and PAAT plays a critical role in Ang II-induced common carotid artery inflammation and remodeling.Visual OvervieW: An online visual overview is available for this article.


Assuntos
Adipócitos Marrons/citologia , Adipogenia , Tecido Adiposo/fisiologia , Crista Neural/citologia , Tecido Adiposo/citologia , Angiotensina II/farmacologia , Animais , Aorta Torácica/citologia , Artéria Carótida Primitiva/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/fisiologia , Proteína Wnt1/fisiologia
6.
Cell Mol Life Sci ; 76(4): 777-789, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30448891

RESUMO

Thoracic aorta perivascular adipose tissue (T-PVAT) has critical roles in regulating vascular homeostasis. However, the developmental characteristics and cellular lineage of adipocyte in the T-PVAT remain unclear. We show that T-PVAT contains three long strip-shaped fat depots, anterior T-PVAT (A-T-PVAT), left lateral T-PVAT (LL-T-PVAT), and right lateral T-PVAT (RL-T-PVAT). A-T-PVAT displays a distinct transcriptional profile and developmental origin compared to the two lateral T-PVATs (L-T-PVAT). Lineage tracing studies indicate that A-T-PVAT adipocytes are primarily derived from SM22α+ progenitors, whereas L-T-PVAT contains both SM22α+ and Myf5+ cells. We also show that L-T-PVAT contains more UCP1+ brown adipocytes than A-T-PVAT, and L-T-PVAT exerts a greater relaxing effect on aorta than A-T-PVAT. Angiotensin II-infused hypertensive mice display greater macrophage infiltration into A-T-PVAT than L-T-PVAT. These combined results indicate that L-T-PVAT has a distinct development from A-T-PVAT with different cellular lineage, and suggest that L-T-PVAT and A-T-PVAT have different physiological and pathological functions.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Aorta Torácica/metabolismo , Perfilação da Expressão Gênica/métodos , Tecido Adiposo/citologia , Tecido Adiposo/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Ontologia Genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Células-Tronco/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
7.
J Neurochem ; 150(6): 709-722, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31339573

RESUMO

Neural stem cells (NSCs) transplantation represents a promising strategy for the repair of injured neurons, since NSCs not only produce multiple neurotrophic growth factors but also differentiate into mature cells to replace damaged cells. Previous studies have shown that Notch signaling pathway had negative effects on neuronal differentiation; however, the precise mechanism remained inadequately understood. This research aimed to investigate whether inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in rat spinal cord injury through suppressing the activation of Ras homolog family member A (RhoA). QPCR, western blot, and immunofluorescence experiments were used to analyze Notch1 signaling pathways, RhoA, Ras homologous -associated coiled-coil containing protein kinase 1 (ROCK1), cleaved caspased-3, and neuronal/astrocytic differentiation markers. The expression of RhoA and ROCK1 was inhibited by lentivirus or specific biochemical inhibitors. In spinal cord injury (SCI), motor function was assessed by hind limbs movements and electrophysiology. Tissue repairing was measured by immunofluorescence, Nissl staining, Fluorogold, HE staining, QPCR, western blot, and magnetic resonance imaging (MRI) experiments. Our results demonstrate that inhibition of Notch1 in NSCs can promote the differentiation of NSCs to neurons. Knockdown of RhoA and inhibition of ROCK1 both can promote neuronal differentiation through inhibiting the activation of Notch1 signaling pathway in NSCs. In SCI, silencing RhoA enhanced neuronal differentiation and improved tissue repairing/functional recovery by inhibiting the activation of Notch1 signaling pathway. Since Notch1 inhibits neuronal differentiation through activating the RhoA/ROCK1 signaling pathway in NSCs, our data suggest that the Notch1/RhoA/ROCK1/Hes1/Hes5 signaling pathway may serve as a novel target for the treatment of SCI.


Assuntos
Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Receptor Notch1/metabolismo , Traumatismos da Medula Espinal/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Transplante de Células-Tronco
8.
Am J Med Genet A ; 179(1): 71-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422383

RESUMO

Ets-1 is a member of the Ets family of transcription factors and has critical roles in multiple biological functions. Structural kidney defects occur at an increased frequency in Jacobsen syndrome (OMIM #147791), a rare chromosomal disorder caused by deletions in distal 11q, implicating at least one causal gene in distal 11q. In this study, we define an 8.1 Mb "critical region" for kidney defects in Jacobsen syndrome, which spans ~50 genes. We demonstrate that gene-targeted deletion of Ets-1 in mice results in some of the most common congenital kidney defects occurring in Jacobsen syndrome, including: duplicated kidney, hypoplastic kidney, and dilated renal pelvis and calyces. Taken together, our results implicate Ets-1 in normal mammalian kidney development and, potentially, in the pathogenesis of some of the most common types of human structural kidney defects.


Assuntos
Síndrome da Deleção Distal 11q de Jacobsen/genética , Rim/patologia , Proteína Proto-Oncogênica c-ets-1/genética , Animais , Cromossomos Humanos Par 11 , Modelos Animais de Doenças , Deleção de Genes , Marcação de Genes , Predisposição Genética para Doença , Humanos , Síndrome da Deleção Distal 11q de Jacobsen/patologia , Rim/anormalidades , Rim/crescimento & desenvolvimento , Camundongos , Deleção de Sequência/genética
9.
J Cardiol ; 81(1): 49-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414472

RESUMO

From highly aligned extracellular fibrils to the cells, a multilevel ordered hierarchy in valve leaflets is crucial for their biological function. Cardiac valve pathology most frequently involves a disruption in normal structure-function correlations through abnormal and complex interaction of cells, extracellular matrix, and their environment. At present, effective treatment for valve disease is limited and frequently ends with surgical repair or replacement with a mechanical or artificial biological cardiac valve, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of valve disease in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level. However, the cellular heterogeneity and function is still unclear. In this review, we summarize the body of work on valve cells, with a particular focus on the discoveries about valve cells heterogeneity and functions using single-cell RNA sequencing. We conclude by discussing state-of-the-art strategies for deciphering heterogeneity of these complex cell types, and argue this knowledge could translate into the improved personalized treatment of cardiac valve disease.


Assuntos
Doenças das Valvas Cardíacas , Próteses Valvulares Cardíacas , Criança , Humanos , Idoso , Doenças das Valvas Cardíacas/cirurgia , Valvas Cardíacas , Análise de Sequência de RNA , Biologia
10.
Eur Heart J Qual Care Clin Outcomes ; 9(5): 459-473, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893802

RESUMO

AIMS: To assess the trends in calcific aortic valve disease (CAVD) epidemiology, with an emphasis on CAVD mortality, leading risk factors, and their associations with age, period, and birth cohort. METHODS AND RESULTS: Prevalence, disability-adjusted life years, and mortality were derived from the Global Burden of Disease Study 2019. The age-period-cohort model was employed to study the detailed trends of CAVD mortality and its leading risk factors. Globally, CAVD showed unsatisfactory results from 1990 to 2019, with the CAVD deaths of 127 000 in 2019. CAVD mortality was substantially reduced in high socio-demographic index (SDI) countries [-1.45%, 95% confidence interval (CI) (-1.61 to -1.30)], mildly increased in high-middle SDI countries [0.22%, 95% CI (0.06-0.37)], and unchanged in other SDI quintiles. There was a noticeable transition in CAVD deaths from younger to older populations globally. The CAVD mortality increased exponentially with age, and the male had higher mortality than the female before 80 years old. Favourable period [0.69, 95% CI (0.66-0.72)] and birth effects [0.30, 95% CI (0.22-0.43)] were mainly observed in high SDI countries, while unfavourable effects were mostly noticed in high-middle SDI countries. High systolic blood pressure was the leading risk factor of CAVD deaths globally, and it showed favourable trends in high SDI regions. CONCLUSION: Although CAVD mortality reduction was observed globally, unfavourable period, and cohort effects were found in many countries. Increase of mortality rate among the population ≥85 years was the common challenge across all SDI quintiles, stressing the necessity to further improve health care for CAVD patients worldwide.


Assuntos
Valvopatia Aórtica , Carga Global da Doença , Humanos , Masculino , Feminino , Idoso de 80 Anos ou mais , Anos de Vida Ajustados por Qualidade de Vida , Fatores de Risco , Estudos de Coortes
11.
Front Cardiovasc Med ; 8: 643519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179129

RESUMO

"A world in a wild flower, and a bodhi in a leaf," small cells contain huge secrets. The vasculature is composed of many multifunctional cell subpopulations, each of which is involved in the occurrence and development of cardiovascular diseases. Single-cell transcriptomics captures the full picture of genes expressed within individual cells, identifies rare or de novo cell subpopulations, analyzes single-cell trajectory and stem cell or progenitor cell lineage conversion, and compares healthy tissue and disease-related tissue at single-cell resolution. Single-cell transcriptomics has had a profound effect on the field of cardiovascular research over the past decade, as evidenced by the construction of cardiovascular cell landscape, as well as the clarification of cardiovascular diseases and the mechanism of stem cell or progenitor cell differentiation. The classification and proportion of cell subpopulations in vasculature vary with species, location, genotype, and disease, exhibiting unique gene expression characteristics in organ development, disease progression, and regression. Specific gene markers are expected to be the diagnostic criteria, therapeutic targets, or prognostic indicators of diseases. Therefore, treatment of vascular disease still has lots of potentials to develop. Herein, we summarize the cell clusters and gene expression patterns in normal vasculature and atherosclerosis, aortic aneurysm, and pulmonary hypertension to reveal vascular heterogeneity and new regulatory factors of cardiovascular disease in the use of single-cell transcriptomics and discuss its current limitations and promising clinical potential.

12.
J Vis Exp ; (157)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32176213

RESUMO

An excessive amount of adipose tissue surrounding the blood vessels (perivascular adipose tissue, also known as PVAT) is associated with a high risk of cardiovascular disease. ADSCs derived from different adipose tissues show distinct features, and those from the PVAT have not been well characterized. In a recent study, we reported that some ADSCs in the periaortic arch adipose tissue (PAAT) descend from the neural crest cells (NCCs), a transient population of migratory cells originating from the ectoderm. In this paper, we describe a protocol for isolating red fluorescent protein (RFP)-labeled NCCs from the PAAT of Wnt-1 Cre+/-;Rosa26RFP/+ mice and inducing their adipogenic differentiation in vitro. Briefly, the stromal vascular fraction (SVF) is enzymatically dissociated from the PAAT, and the RFP+ neural crest derived ADSCs (NCADSCs) are isolated by fluorescence activated cell sorting (FACS). The NCADSCs differentiate into both brown and white adipocytes, can be cryopreserved, and retain their adipogenic potential for ~3-5 passages. Our protocol can generate abundant ADSCs from the PVAT for modeling PVAT adipogenesis or lipogenesis in vitro. Thus, these NCADSCs can provide a valuable system for studying the molecular switches involved in PVAT differentiation.


Assuntos
Adipogenia , Tecido Adiposo/citologia , Crista Neural/citologia , Células-Tronco/citologia , Animais , Aorta/citologia , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Citometria de Fluxo , Lipogênese , Masculino , Camundongos
13.
BMB Rep ; 52(10): 595-600, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30670148

RESUMO

Cardiac fibrosis is a common feature in chronic hypertension patients with advanced heart failure, and endothelial-tomesenchymal transition (EndMT) is known to promote Angiotensin II (Ang II)-mediated cardiac fibrosis. Previous studies have suggested a potential role for the transcription factor, ETS-1, in Ang II-mediated cardiac remodeling, however the mechanism are not well defined. In this study, we found that mice with endothelial Ets-1 deletion showed reduced cardiac fibrosis and hypertrophy following Ang II infusion. The reduced cardiac fibrosis was accompanied by decreased expression of fibrotic matrix genes, reduced EndMT with decreased Snail, Slug, Twist, and ZEB1 expression, as well as reduced cardiac hypertrophy and expression of hypertrophyassociated genes was observed. In vitro studies using cultured H5V cells further confirmed that ETS-1 knockdown inhibited TGF-ß1-induced EndMT. This study revealed that deletion of endothelial Ets-1 attenuated Ang II-induced cardiac fibrosis via inhibition of EndMT, indicating an important ETS-1 function in mediating EndMT. Inhibition of ETS-1 could be a potential therapeutic strategy for treatment of heart failure secondary to chronic hypertension. [BMB Reports 2019; 52(10): 595-600].


Assuntos
Transição Epitelial-Mesenquimal , Miocárdio/patologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Angiotensina II , Animais , Cardiomegalia/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Fatores de Transcrição Twist/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
14.
Diabetes ; 67(8): 1549-1560, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29794241

RESUMO

Obesity increases the risk of vascular diseases, including aortic aneurysm (AA). Perivascular adipose tissue (PVAT) surrounding arteries are altered during obesity. However, the underlying mechanism of adipose tissue, especially PVAT, in the pathogenesis of AA is still unclear. Here we showed that angiotensin II (AngII) infusion increases the incidence of AA in leptin-deficient obese mice (ob/ob) and high-fat diet-induced obese mice with adventitial inflammation. Furthermore, transcriptome analysis revealed that platelet-derived growth factor-D (PDGF-D) was highly expressed in the PVAT of ob/ob mice. Therefore, we hypothesized that PDGF-D mediates adventitial inflammation, which provides a direct link between PVAT dysfunction and AA formation in AngII-infused obese mice. We found that PDGF-D promotes the proliferation, migration, and inflammatory factors expression in cultured adventitial fibroblasts. In addition, the inhibition of PDGF-D function significantly reduced the incidence of AA in AngII-infused obese mice. More importantly, adipocyte-specific PDGF-D transgenic mice are more susceptible to AA formation after AngII infusion accompanied by exaggerated adventitial inflammatory and fibrotic responses. Collectively, our findings reveal a notable role of PDGF-D in the AA formation during obesity, and modulation of this cytokine might be an exploitable treatment strategy for the condition.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/etiologia , Gordura Intra-Abdominal/metabolismo , Linfocinas/metabolismo , Obesidade/fisiopatologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Túnica Adventícia/efeitos dos fármacos , Túnica Adventícia/imunologia , Túnica Adventícia/metabolismo , Túnica Adventícia/patologia , Angiotensina II/administração & dosagem , Angiotensina II/efeitos adversos , Animais , Aorta Abdominal/diagnóstico por imagem , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Benzimidazóis/farmacologia , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Implantes de Medicamento , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/patologia , Linfocinas/agonistas , Linfocinas/antagonistas & inibidores , Linfocinas/genética , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Especificidade de Órgãos , Fator de Crescimento Derivado de Plaquetas/agonistas , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/genética , Quinolinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Gordura Subcutânea Abdominal/efeitos dos fármacos , Gordura Subcutânea Abdominal/imunologia , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA