Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247965

RESUMO

Karnal bunt disease of wheat, caused by the fungus Neovossia indica, is one of the most important challenges to the grain industry as it affects the grain quality and also restricts the international movement of infected grain. It is a seed-, soil- and airborne disease with limited effect of chemical control. Currently, this disease is contained through the deployment of host resistance but further improvement is limited as only a few genotypes have been found to carry partial resistance. To identify genomic regions responsible for resistance in a set of 339 wheat accessions, genome-wide association study (GWAS) was undertaken using the DArTSeq® technology, in which 18 genomic regions for Karnal bunt resistance were identified, explaining 5-20% of the phenotypic variation. The identified quantitative trait loci (QTL) on chromosome 2BL showed consistently significant effects across all four experiments, whereas another QTL on 5BL was significant in three experiments. Additional QTLs were mapped on chromosomes 1DL, 2DL, 4AL, 5AS, 6BL, 6BS, 7BS and 7DL that have not been mapped previously, and on chromosomes 4B, 5AL, 5BL and 6BS, which have been reported in previous studies. Germplasm with less than 1% Karnal bunt infection have been identified and can be used for resistance breeding. The SNP markers linked to the genomic regions conferring resistance to Karnal bunt could be used to improve Karnal bunt resistance through marker-assisted selection.


Assuntos
Basidiomycota , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Marcadores Genéticos , Variação Genética , Genoma Fúngico , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes
2.
Front Plant Sci ; 12: 675859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394138

RESUMO

Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is staple food to half the world's population. The current world population is expected to reach 9.8 billion people by 2050, but food production is not expected to keep pace with demand in developing countries. Significant opportunities exist for traditional grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several wheat-importing countries. The cultivation of resistant varieties remains the most cost-effective approach to manage the disease, but in countries that are free of the disease, genetic improvement is difficult due to quarantine restrictions. Here we report a study on pre-emptive breeding designed to identify linked molecular markers, evaluate the prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq markers significantly linked to Karnal bunt resistance, which explained between 7.6 and 29.5% of the observed phenotypic variation. The accuracy of genomic prediction was estimated to vary between 0.53 and 0.56, depending on whether it is based solely on the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers. As genotypes used as parents would be required to possess good yield and phenology, further research was conducted to assess the agronomic value of Karnal bunt resistant germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes to the highly successful Australian wheat variety, Mace. It is phenotypically resistant to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected for resistance in this study. The identification of a genotype combining Karnal bunt resistance with adaptive agronomic traits overcomes the concerns of breeders regarding yield penalty in the absence of the disease.

3.
G3 (Bethesda) ; 9(5): 1437-1447, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30824480

RESUMO

Karnal bunt caused by Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur] is a significant biosecurity concern for wheat-exporting countries that are free of the disease. It is a seed-, soil-and air-borne disease with no effective chemical control measures. The current study used data from multi-year field experiments of two bi-parental populations and a genome-wide association (GWA) mapping panel to unravel the genetic basis for resistance in common wheat. Broad-sense heritability for Karnal bunt resistance in the populations varied from 0.52 in the WH542×HD29 population, to 0.61 in the WH542×W485 cross and 0.71 in a GWAS panel. Quantitative trait locus (QTL) analysis with seven years of phenotypic data identified a major locus on chromosome 3B (R2 = 27.8%) and a minor locus on chromosome 1A (R2 = 12.2%), in the WH542×HD29 population, with both parents contributing the high-value alleles. A major locus (R2 = 27.8%) and seven minor loci (R2 = 4.4-15.8%) were detected in the WH542×W485 population. GWA mapping validated QTL regions in the bi-parent populations, but also identified novel loci not previously associated with Karnal bunt resistance. Meta-QTL analysis aligned the results from this study with those reported in wheat over the last two decades. Two major clusters were detected, the first on chromosome 4B, which clustered with Qkb.ksu-4B, QKb.cimmyt-4BL, Qkb.cim-4BL, and the second on chromosome 3B, which clustered with Qkb.cnl-3B, QKb.cimmyt-3BS and Qkb.cim-3BS1 The results provide definitive chromosomal assignments for QTL/genes controlling Karnal bunt resistance in common wheat, and will be useful in pre-emptive breeding against the pathogen in wheat-producing areas that are free of the disease.


Assuntos
Basidiomycota , Resistência à Doença/genética , Ligação Genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Genótipo , Endogamia , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Front Plant Sci ; 9: 1497, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386358

RESUMO

Karnal bunt (KB) of wheat, caused by Tilletia indica, is one of the greatest challenges to grain industry, not because of yield loss, but quarantine regulations that restrict international movement and trade of affected stocks. Genetic resistance is the best way to manage this disease. Although several different sources of resistance have been identified to date, very few of those have been subjected to genetic analyses. Understanding the genetics of resistance, characterization and mapping of new resistance loci can help in development of improved germplasm. The objective of this study was to identify and characterize resistance loci (QTL) in two independent recombinant inbred lines (RILs) populations utilizing different wheat lines as resistance donors. Elite CIMMYT wheat lines Blouk#1 and Huirivis#1 were used as susceptible female parents and WHEAR/KUKUNA/3/C80.1/3∗BATAVIA//2∗WBLL1 (WKCBW) and Mutus as moderately resistant male parents in Pop1 and Pop2 populations, respectively. Populations were evaluated for KB resistance in 2015-16 and 2016-17 cropping seasons at two seeding dates (total four environments) in Cd. Obregon, Mexico. Two stable QTL from each population were identified in each environment: QKb.cim-2B and QKb.cim-3D (Pop1), QKb.cim-3B1 and QKb.cim-5B2 (Pop2). Other than those four QTL, other QTL were detected in each population which were specific to environments: QKb.cim-5B1, QKb.cim-6A, and QKb.cim-7A (Pop1), QKb.cim-3B2, QKb.cim-4A1, QKb.cim-4A2, QKb.cim-4B, QKb.cim-5A1, QKb.cim-5A2, and QKb.cim-7A2 (Pop2). Among the four stable QTL, all but QKb.cim-3B1 were derived from the resistant parent. QKb.cim-2B and QKb.cim-3D in Pop1 and QKb.cim-3B1 and QKb.cim-5B2 in Pop2 explained 5.0-11.4% and 3.3-7.1% phenotypic variance, respectively. A combination of two stable QTL in each population reduced KB infection by 24-33%, respectively. Transgressive resistant segregants lines derived with resistance alleles from both parents in each population were identified. Single nucleotide polymorphism (SNP) markers flanking these QTL regions may be amenable to marker-assisted selection. The best lines from both populations (in agronomy, end-use quality and KB resistance) carrying resistance alleles at all identified loci, may be used for inter-crossing and selection of improved germplasm in future. Markers flanking these QTL may assist in selection of such lines.

5.
Sci Rep ; 8(1): 12527, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131572

RESUMO

The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the 'T' allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT's best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Abastecimento de Alimentos , Frequência do Gene , Haplótipos , Temperatura Alta , Melhoramento Vegetal , Banco de Sementes , Análise de Sequência de DNA , Estresse Fisiológico , Triticum/classificação , Triticum/crescimento & desenvolvimento
6.
Sci Rep ; 6: 23092, 2016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976656

RESUMO

Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Triticum/genética , Algoritmos , Alelos , Fluxo Gênico , Frequência do Gene , Genótipo , Geografia , México , Modelos Genéticos , Fenótipo , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Componente Principal , Especificidade da Espécie , Triticum/classificação
8.
Rev. mex. micol ; 9: 57-66, ene.-dic. 1993. tab
Artigo em Espanhol | LILACS | ID: lil-134936

RESUMO

Líneas avanzadas de trigo harinero (Triticum aestivum), trigo duro (T. durum), triticale (X Triticosecale), hibridaciones de T. aestivum con agropyron spp. y trigos hexaploides X triticale fueron evaluados en cuanto a su resistencia a Tilletia indica, el agente causal del carbón parcial del trigo. Las plantas fueron inoculadas artificialmente en embuche con una suspensión de esporidios en una concentración de 10,000/ml en tres fechas de siembra en el CIANO, cd. Obregón, Sonora, durante 1988-89. Los porcentajes de líneas con niveles de infección menores al 5 por ciento fueron 57.8 para trigos harineros, 82.6 para trigos duros, 83.6 para triticale, 60 la líneas derivadas de cruzas interespecíficas y 75 para líneas avanzadas producidas por la sección de desarrollo de germoplasma básica de CIMMYT. La media de infección del testigo susceptible fue de 75.4 por ciento


Assuntos
Basidiomycota/isolamento & purificação , Triticum , Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA