Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 24(Pt 5): 1039-1047, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862627

RESUMO

Tumor vasculature is characterized by morphological and functional abnormalities. However, analysis of the dynamics in blood flow is still challenging because of limited spatial and temporal resolution. Synchrotron radiation (SR) microangiography above the K-edge of the iodine contrast agent can provide high-contrast imaging of microvessels in time orders of milliseconds. In this study, mice bearing the human breast cancer cell lines MDAMB231 and NOTCH4 overexpression in MDAMB231 (MDAMB231NOTCH4+) and normal mice were assessed using SR microangiography. NOTCH is transmembrane protein that has crucial roles for vasculogenesis, angiogenesis and tumorigenesis, and NOTCH4 is considered to be a cause of high-flow arteriovenous shunting. A subgroup of mice received intravenous eribulin treatment, which is known to improve intratumor core circulation (MDAMB231_eribulin). Microvessel branches from approximately 200 µm to less than 20 µm in diameter were observed within the same visual field. The mean transition time (MTT) was measured as a dynamic parameter and quantitative analysis was performed. MTT in MDAMB231 was longer than that in normal tissue, and MDAMB231NOTCH4+ showed shorter MTT [5.0 ± 1.4 s, 3.6 ± 1.0 s and 3.6 ± 1.1 s (mean ± standard deviation), respectively]. After treatment, average MTT was correlated to tumor volume (r = 0.999) in MDAMB231_eribulin, while in contrast there was no correlation in MDAMB231 (r = -0.026). These changes in MTT profile are considered to be driven by the modulation of intratumoral circulation dynamics. These results demonstrate that a SR microangiography approach enables quantitative analysis of morphological and dynamic characteristics of tumor vasculature in vivo. Further studies will reveal new findings concerning vessel function in tumors.


Assuntos
Angiografia/métodos , Neoplasias da Mama/irrigação sanguínea , Hemodinâmica , Síncrotrons , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Feminino , Xenoenxertos , Humanos , Camundongos , Receptor Notch4/metabolismo
2.
J Clin Microbiol ; 48(7): 2357-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20421438

RESUMO

Fungal diseases in immunocompromised hosts pose significant threats to their prognoses. An accurate diagnosis and identification of the fungal pathogens causing the infection are critical to determine the proper therapeutic interventions, but these are often not achieved, due to difficulties with isolation and morphological identification. In an effort to ultimately carry out the simultaneous detection of all human pathogenic microbes, we developed a simple system to identify 26 clinically important fungi by using a combination of PCR amplification and DNA microarray assay (designated PCR-DM), in which PCR-amplified DNA from the internal transcribed spacer region of the rRNA gene was hybridized to a DNA microarray fabricated with species-specific probes sets using the Bubble Jet technology. PCR-DM reliably identified all 26 reference strains; hence, we applied it to cases of onychomycosis, taking advantage of the accessibility of tissue from skin. PCR-DM detected fungal DNA and identified pathogens in 92% of 106 microscopy-confirmed onychomycosis specimens. In contrast, culture was successful for only 36 specimens (34%), 3 of which had results inconsistent with the results of PCR-DM, but sequence analysis of the isolates proved that the PCR-DM result was correct. Thus, PCR-DM provides a powerful method to identify pathogenic fungi with high sensitivity and speed directly from tissue specimens, and this concept could be applied to other fungal or nonfungal infectious human diseases in less accessible anatomical sites.


Assuntos
Candida/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Onicomicose , Reação em Cadeia da Polimerase/métodos , Trichophyton/isolamento & purificação , Candida/genética , DNA Fúngico/análise , DNA Fúngico/isolamento & purificação , Humanos , Unhas/microbiologia , Onicomicose/diagnóstico , Onicomicose/microbiologia , Valor Preditivo dos Testes , Especificidade da Espécie , Trichophyton/genética
3.
Photoacoustics ; 11: 6-13, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30003041

RESUMO

This study aimed to identify the characteristics of the vascular network in the superficial subcutaneous layer of the breast and to analyze differences between breasts with cancer and contralateral unaffected breasts using vessel branching points (VBPs) detected by three-dimensional photoacoustic imaging with a hemispherical detector array. In 22 patients with unilateral breast cancer, the average VBP counts to a depth of 7 mm below the skin surface were significantly greater in breasts with cancer than in the contralateral unaffected breasts (p < 0.01). The ratio of the VBP count in the breasts with cancer to that in the contralateral breasts was significantly increased in patients with a high histologic grade (p = 0.03), those with estrogen receptor-negative disease (p < 0.01), and those with highly proliferative disease (p < 0.01). These preliminary findings indicate that a higher number of VBPs in the superficial subcutaneous layer of the breast might be a biomarker for primary breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA