Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 16(6): 599-608, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915732

RESUMO

Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.


Assuntos
Proteínas de Homeodomínio/metabolismo , Células Matadoras Naturais/fisiologia , Subpopulações de Linfócitos/fisiologia , Células Progenitoras Linfoides/fisiologia , Receptores Notch/metabolismo , Animais , Células da Medula Óssea/fisiologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Feminino , Proteínas de Homeodomínio/genética , Imunidade Inata/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Notch/genética , Transcriptoma
2.
BMC Cancer ; 15: 22, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25632947

RESUMO

BACKGROUND: A breast cancer susceptibility locus has been mapped to the gene encoding TOX3. Little is known regarding the expression pattern or biological role of TOX3 in breast cancer or in the mammary gland. Here we analyzed TOX3 expression in murine and human mammary glands and in molecular subtypes of breast cancer, and assessed its ability to alter the biology of breast cancer cells. METHODS: We used a cell sorting strategy, followed by quantitative real-time PCR, to study TOX3 gene expression in the mouse mammary gland. To study the expression of this nuclear protein in human mammary glands and breast tumors, we generated a rabbit monoclonal antibody specific for human TOX3. In vitro studies were performed on MCF7, BT474 and MDA-MB-231 cell lines to study the effects of TOX3 modulation on gene expression in the context of breast cancer cells. RESULTS: We found TOX3 expression in estrogen receptor-positive mammary epithelial cells, including progenitor cells. A subset of breast tumors also highly expresses TOX3, with poor outcome associated with high expression of TOX3 in luminal B breast cancers. We also demonstrate the ability of TOX3 to alter gene expression in MCF7 luminal breast cancer cells, including cancer relevant genes TFF1 and CXCR4. Knockdown of TOX3 in a luminal B breast cancer cell line that highly expresses TOX3 is associated with slower growth. Surprisingly, TOX3 is also shown to regulate TFF1 in an estrogen-independent and tamoxifen-insensitive manner. CONCLUSIONS: These results demonstrate that high expression of this protein likely plays a crucial role in breast cancer progression. This is in sharp contrast to previous studies that indicated breast cancer susceptibility is associated with lower expression of TOX3. Together, these results suggest two different roles for TOX3, one in the initiation of breast cancer, potentially related to expression of TOX3 in mammary epithelial cell progenitors, and another role for this nuclear protein in the progression of cancer. In addition, these results can begin to shed light on the reported association of TOX3 expression and breast cancer metastasis to the bone, and point to TOX3 as a novel regulator of estrogen receptor-mediated gene expression.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Animais , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Prognóstico , Receptores de Progesterona/metabolismo , Transativadores
3.
Scand J Gastroenterol ; 50(9): 1076-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25865706

RESUMO

OBJECTIVE: Breath testing and duodenal culture studies suggest that a significant proportion of irritable bowel syndrome (IBS) patients have small intestinal bacterial overgrowth. In this study, we extended these data through 16S rDNA amplicon sequencing and quantitative PCR (qPCR) analyses of duodenal aspirates from a large cohort of IBS, non-IBS and control subjects. MATERIALS AND METHODS: Consecutive subjects presenting for esophagogastroduodenoscopy only and healthy controls were recruited. Exclusion criteria included recent antibiotic or probiotic use. Following extensive medical work-up, patients were evaluated for symptoms of IBS. DNAs were isolated from duodenal aspirates obtained during endoscopy. Microbial populations in a subset of IBS subjects and controls were compared by 16S profiling. Duodenal microbes were then quantitated in the entire cohort by qPCR and the results compared with quantitative live culture data. RESULTS: A total of 258 subjects were recruited (21 healthy, 163 non-healthy non-IBS, and 74 IBS). 16S profiling in five IBS and five control subjects revealed significantly lower microbial diversity in the duodenum in IBS, with significant alterations in 12 genera (false discovery rate < 0.15), including overrepresentation of Escherichia/Shigella (p = 0.005) and Aeromonas (p = 0.051) and underrepresentation of Acinetobacter (p = 0.024), Citrobacter (p = 0.031) and Microvirgula (p = 0.036). qPCR in all 258 subjects confirmed greater levels of Escherichia coli in IBS and also revealed increases in Klebsiella spp, which correlated strongly with quantitative culture data. CONCLUSIONS: 16S rDNA sequencing confirms microbial overgrowth in the small bowel in IBS, with a concomitant reduction in diversity. qPCR supports alterations in specific microbial populations in IBS.


Assuntos
DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Duodeno/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Síndrome do Intestino Irritável/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Endoscopia Gastrointestinal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real
4.
Am J Hum Genet ; 87(4): 532-7, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20869035

RESUMO

Diaphanospondylodysostosis (DSD) is a rare, recessively inherited, perinatal lethal skeletal disorder. The low frequency and perinatal lethality of DSD makes assembling a large set of families for traditional linkage-based genetic approaches challenging. By searching for evidence of unknown ancestral consanguinity, we identified two autozygous intervals, comprising 34 Mbps, unique to a single case of DSD. Empirically testing for ancestral consanguinity was effective in localizing the causative variant, thereby reducing the genomic space within which the mutation resides. High-throughput sequence analysis of exons captured from these intervals demonstrated that the affected individual was homozygous for a null mutation in BMPER, which encodes the bone morphogenetic protein-binding endothelial cell precursor-derived regulator. Mutations in BMPER were subsequently found in three additional DSD cases, confirming that defects in BMPER produce DSD. Phenotypic similarities between DSD and Bmper null mice indicate that BMPER-mediated signaling plays an essential role in vertebral segmentation early in human development.


Assuntos
Proteína Morfogenética Óssea 2/genética , Consanguinidade , Disostoses/genética , Transdução de Sinais/genética , Coluna Vertebral/embriologia , Espondilólise/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Genes Recessivos/genética , Homozigoto , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
5.
N Engl J Med ; 362(3): 206-16, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20089971

RESUMO

BACKGROUND: Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS: We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS: Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS: GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.


Assuntos
Condrócitos/citologia , Códon sem Sentido , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Animais , Diferenciação Celular , Proliferação de Células , Proteínas do Citoesqueleto , Retículo Endoplasmático/ultraestrutura , Genes Recessivos , Glicosilação , Complexo de Golgi/ultraestrutura , Humanos , Camundongos , Camundongos Mutantes , Proteínas Nucleares/deficiência , Fenótipo , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional/fisiologia , Análise de Sequência de DNA
6.
Am J Hum Genet ; 84(1): 72-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19110214

RESUMO

Analysis of a nuclear family with three affected offspring identified an autosomal-recessive form of spondyloepimetaphyseal dysplasia characterized by severe short stature and a unique constellation of radiographic findings. Homozygosity for a haplotype that was identical by descent between two of the affected individuals identified a locus for the disease gene within a 17.4 Mb interval on chromosome 15, a region containing 296 genes. These genes were assessed and ranked by cartilage selectivity with whole-genome microarray data, revealing only two genes, encoding aggrecan and chondroitin sulfate proteoglycan 4, that were selectively expressed in cartilage. Sequence analysis of aggrecan complementary DNA from an affected individual revealed homozygosity for a missense mutation (c.6799G --> A) that predicts a p.D2267N amino acid substitution in the C-type lectin domain within the G3 domain of aggrecan. The D2267 residue is predicted to coordinate binding of a calcium ion, which influences the conformational binding loops of the C-type lectin domain that mediate interactions with tenascins and other extracellular-matrix proteins. Expression of the normal and mutant G3 domains in mammalian cells showed that the mutation created a functional N-glycosylation site but did not adversely affect protein trafficking and secretion. Surface-plasmon-resonance studies showed that the mutation influenced the binding and kinetics of the interactions between the aggrecan G3 domain and tenascin-C. These findings identify an autosomal-recessive skeletal dysplasia and a significant role for the aggrecan C-type lectin domain in regulating endochondral ossification and, thereby, height.


Assuntos
Agrecanas/genética , Antígenos/genética , Predisposição Genética para Doença , Lectinas Tipo C/genética , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Proteoglicanas/genética , Adolescente , Adulto , Agrecanas/metabolismo , Sequência de Aminoácidos , Antígenos/metabolismo , Cartilagem/metabolismo , Linhagem Celular , Criança , Feminino , Humanos , Lectinas Tipo C/metabolismo , Masculino , Dados de Sequência Molecular , Osteocondrodisplasias/metabolismo , Linhagem , Ligação Proteica , Estrutura Terciária de Proteína , Proteoglicanas/metabolismo , Tenascina/metabolismo , Adulto Jovem
7.
Am J Hum Genet ; 84(4): 542-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19361615

RESUMO

The short-rib polydactyly (SRP) syndromes are a heterogeneous group of perinatal lethal skeletal disorders with polydactyly and multisystem organ abnormalities. Homozygosity by descent mapping in a consanguineous SRP family identified a genomic region that contained DYNC2H1, a cytoplasmic dynein involved in retrograde transport in the cilium. Affected individuals in the family were homozygous for an exon 12 missense mutation that predicted the amino acid substitution R587C. Compound heterozygosity for one missense and one null mutation was identified in two additional nonconsanguineous SRP families. Cultured chondrocytes from affected individuals showed morphologically abnormal, shortened cilia. In addition, the chondrocytes showed abnormal cytoskeletal microtubule architecture, implicating an altered microtubule network as part of the disease process. These findings establish SRP as a cilia disorder and demonstrate that DYNC2H1 is essential for skeletogenesis and growth.


Assuntos
Cílios/patologia , Dineínas/genética , Mutação , Síndrome de Costela Curta e Polidactilia/genética , Sequência de Bases , Células Cultivadas , Condrócitos/patologia , Códon sem Sentido , Consanguinidade , Dineínas do Citoplasma , Primers do DNA/genética , Dineínas/fisiologia , Feminino , Homozigoto , Humanos , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Linhagem , Gravidez , Radiografia , Síndrome de Costela Curta e Polidactilia/diagnóstico por imagem , Síndrome de Costela Curta e Polidactilia/embriologia
8.
Am J Med Genet A ; 158A(2): 309-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22246659

RESUMO

Fibrochondrogenesis is a severe, recessively inherited skeletal dysplasia shown to result from mutations in the gene encoding the proα1(XI) chain of type XI collagen, COL11A1. The first of two cases reported here was the affected offspring of first cousins and sequence analysis excluded mutations in COL11A1. Consequently, whole-genome SNP genotyping was performed to identify blocks of homozygosity, identical-by-descent, wherein the disease locus would reside. COL11A1 was not within a region of homozygosity, further excluding it as the disease locus, but the gene encoding the proα2(XI) chain of type XI collagen, COL11A2, was located within a large region of homozygosity. Sequence analysis identified homozygosity for a splice donor mutation in intron 18. Exon trapping demonstrated that the mutation resulted in skipping of exon 18 and predicted deletion of 18 amino acids from the triple helical domain of the protein. In the second case, heterozygosity for a de novo 9 bp deletion in exon 40 of COL11A2 was identified, indicating that there are autosomal dominant forms of fibrochondrogenesis. These findings thus demonstrate that fibrochondrogenesis can result from either recessively or dominantly inherited mutations in COL11A2.


Assuntos
Colágeno Tipo XI/genética , Nanismo/genética , Nanismo/patologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Sítios de Splice de RNA/genética , Nanismo/diagnóstico , Éxons , Genes Dominantes , Genes Recessivos , Genótipo , Humanos , Recém-Nascido , Íntrons , Osteocondrodisplasias/diagnóstico , Polimorfismo de Nucleotídeo Único , Deleção de Sequência
9.
Pediatr Radiol ; 42(1): 15-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21863289

RESUMO

The spondylo and spondylometaphyseal dysplasias (SMDs) are characterized by vertebral changes and metaphyseal abnormalities of the tubular bones, which produce a phenotypic spectrum of disorders from the mild autosomal-dominant brachyolmia to SMD Kozlowski to autosomal-dominant metatropic dysplasia. Investigations have recently drawn on the similar radiographic features of those conditions to define a new family of skeletal dysplasias caused by mutations in the transient receptor potential cation channel vanilloid 4 (TRPV4). This review demonstrates the significance of radiography in the discovery of a new bone dysplasia family due to mutations in a single gene.


Assuntos
Análise Mutacional de DNA , Predisposição Genética para Doença/genética , Família Multigênica/genética , Polimorfismo de Nucleotídeo Único/genética , Espondilose/diagnóstico por imagem , Espondilose/genética , Canais de Cátion TRPV/genética , Humanos , Radiografia
10.
Hum Pathol ; 112: 59-69, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794242

RESUMO

The NTRK genes include a family of three genes, NTRK1, NTRK2, and NTRK3, which are associated with fusions with a variety of partner genes, leading to upregulation of three proteins, TrkA, TrkB, and TrkC. NTRK fusions occur in a variety of solid tumors: at high incidence in secretory carcinoma of the breast and salivary glands, congenital mesoblastic nephroma, and infantile fibrosarcoma; at intermediate incidence in thyroid carcinoma, particularly postradiation carcinomas and a subset of aggressive papillary carcinomas, Spitzoid melanocytic neoplasms, pediatric midline gliomas (particularly pontine glioma), and KIT/PDGFRA/RAS negative gastrointestinal stromal sarcomas; and at a low incidence in many other solid tumors. With new FDA-approved treatments available and effective in treating patients whose tumors harbor NTRK fusions, testing for these fusions has become important. A variety of technologies can be used for testing, including FISH, PCR, DNA, and RNA-based next-generation sequencing, and immunohistochemistry. RNA-based next-generation sequencing represents the gold standard for the identification of NTRK fusions, but FISH using break-apart probes and DNA-based next-generation sequencing also represent adequate approaches. Immunohistochemistry to detect increased levels of Trk protein may be very useful as a screening technology to reduce costs, although it alone does not represent a definitive diagnostic methodology.


Assuntos
Biomarcadores Tumorais/genética , Glicoproteínas de Membrana/genética , Neoplasias/genética , Receptor trkA/genética , Receptor trkB/genética , Receptor trkC/genética , Biomarcadores Tumorais/análise , Humanos , Fusão Oncogênica/genética , Receptor trkA/biossíntese
11.
Gene Expr ; 14(6): 321-36, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20635574

RESUMO

An accumulation of expressed sequence tag (EST) data in the public domain and the availability of bioinformatic programs have made EST gene expression profiling a common practice. However, the utility and validity of using EST databases (e.g., dbEST) has been criticized, particularly for quantitative assessment of gene expression. Problems with EST sequencing errors, library construction, EST annotation, and multiple paralogs make generation of specific and sensitive qualitative arid quantitative expression profiles a concern. In addition, most EST-derived expression data exists in previously assembled databases. The Virtual Northern Blot (VNB) (http: //tlab.bu.edu/vnb.html) allows generation, evaluation, and optimization of expression profiles in real time, which is especially important for alternatively spliced, novel, or poorly characterized genes. Representative gene families with variable nucleotide sequence identity, tissue specificity, and levels of expression (bcl-xl, aldoA, and cyp2d9) are used to assess the quality of VNB's output. The profiles generated by VNB are more sensitive and specific than those constructed with ESTs listed in preindexed databases at UCSC and NCBI. Moreover, quantitative expression profiles produced by VNB are comparable to quantization obtained from Northern blots and qPCR. The VNB pipeline generates real-time gene expression profiles for single-gene queries that are both qualitatively and quantitatively reliable.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genoma Humano , Northern Blotting , Biologia Computacional , Primers do DNA , Bases de Dados Factuais , Biblioteca Gênica , Marcadores Genéticos/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Sensibilidade e Especificidade
12.
J Immunother Cancer ; 8(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32217756

RESUMO

BACKGROUND: Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, demonstrates predictive biomarker potential for the identification of patients with cancer most likely to respond to immune checkpoint inhibitors. TMB is optimally calculated by whole exome sequencing (WES), but next-generation sequencing targeted panels provide TMB estimates in a time-effective and cost-effective manner. However, differences in panel size and gene coverage, in addition to the underlying bioinformatics pipelines, are known drivers of variability in TMB estimates across laboratories. By directly comparing panel-based TMB estimates from participating laboratories, this study aims to characterize the theoretical variability of panel-based TMB estimates, and provides guidelines on TMB reporting, analytic validation requirements and reference standard alignment in order to maintain consistency of TMB estimation across platforms. METHODS: Eleven laboratories used WES data from The Cancer Genome Atlas Multi-Center Mutation calling in Multiple Cancers (MC3) samples and calculated TMB from the subset of the exome restricted to the genes covered by their targeted panel using their own bioinformatics pipeline (panel TMB). A reference TMB value was calculated from the entire exome using a uniform bioinformatics pipeline all members agreed on (WES TMB). Linear regression analyses were performed to investigate the relationship between WES and panel TMB for all 32 cancer types combined and separately. Variability in panel TMB values at various WES TMB values was also quantified using 95% prediction limits. RESULTS: Study results demonstrated that variability within and between panel TMB values increases as the WES TMB values increase. For each panel, prediction limits based on linear regression analyses that modeled panel TMB as a function of WES TMB were calculated and found to approximately capture the intended 95% of observed panel TMB values. Certain cancer types, such as uterine, bladder and colon cancers exhibited greater variability in panel TMB values, compared with lung and head and neck cancers. CONCLUSIONS: Increasing uptake of TMB as a predictive biomarker in the clinic creates an urgent need to bring stakeholders together to agree on the harmonization of key aspects of panel-based TMB estimation, such as the standardization of TMB reporting, standardization of analytical validation studies and the alignment of panel-based TMB values with a reference standard. These harmonization efforts should improve consistency and reliability of panel TMB estimates and aid in clinical decision-making.


Assuntos
Guias como Assunto/normas , Inibidores de Checkpoint Imunológico/uso terapêutico , Carga Tumoral/genética , Simulação por Computador , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mutação
13.
BMC Genomics ; 10: 646, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20043857

RESUMO

BACKGROUND: The emergence of next-generation sequencing technology presents tremendous opportunities to accelerate the discovery of rare variants or mutations that underlie human genetic disorders. Although the complete sequencing of the affected individuals' genomes would be the most powerful approach to finding such variants, the cost of such efforts make it impractical for routine use in disease gene research. In cases where candidate genes or loci can be defined by linkage, association, or phenotypic studies, the practical sequencing target can be made much smaller than the whole genome, and it becomes critical to have capture methods that can be used to purify the desired portion of the genome for shotgun short-read sequencing without biasing allelic representation or coverage. One major approach is array-based capture which relies on the ability to create a custom in-situ synthesized oligonucleotide microarray for use as a collection of hybridization capture probes. This approach is being used by our group and others routinely and we are continuing to improve its performance. RESULTS: Here, we provide a complete protocol optimized for large aggregate sequence intervals and demonstrate its utility with the capture of all predicted amino acid coding sequence from 3,038 human genes using 241,700 60-mer oligonucleotides. Further, we demonstrate two techniques by which the efficiency of the capture can be increased: by introducing a step to block cross hybridization mediated by common adapter sequences used in sequencing library construction, and by repeating the hybridization capture step. These improvements can boost the targeting efficiency to the point where over 85% of the mapped sequence reads fall within 100 bases of the targeted regions. CONCLUSIONS: The complete protocol introduced in this paper enables researchers to perform practical capture experiments, and includes two novel methods for increasing the targeting efficiency. Coupled with the new massively parallel sequencing technologies, this provides a powerful approach to identifying disease-causing genetic variants that can be localized within the genome by traditional methods.


Assuntos
Loci Gênicos , Genoma Humano , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , DNA de Neoplasias/genética , Genes Neoplásicos , Biblioteca Genômica , Humanos , Alinhamento de Sequência
14.
Mucosal Immunol ; 12(3): 644-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30617301

RESUMO

T helper 9 (TH9) cells are important for the development of inflammatory and allergic diseases. The TH9 transcriptional network converges signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as a strong inducer of mouse and human TH9 differentiation. Mechanistically, TL1A induced the expression of the transcription factors BATF and BATF3 and facilitated their binding to the Il9 promoter leading to enhanced secretion of IL-9. BATF- and BATF3-deficiencies impaired IL-9 secretion under TH9 and TH9-TL1A-polarizing conditions. In vivo, using a T-cell transfer model, we demonstrated that TL1A promoted IL-9-dependent, TH9 cell-induced intestinal and lung inflammation. Neutralizing IL-9 antibodies attenuated TL1A-driven mucosal inflammation. Batf3-/- TH9-TL1A cells induced reduced inflammation and cytokine expression in vivo compared to WT cells. Our results demonstrate that TL1A promotes TH9 cell differentiation and function and define a role for BATF3 in T-cell-driven mucosal inflammation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-9/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular , Células Cultivadas , Humanos , Interleucina-9/genética , Interleucina-9/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/genética , Transdução de Sinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
15.
Oncotarget ; 9(17): 13682-13693, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568386

RESUMO

BACKGROUND: The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. METHODS: In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. RESULTS: Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. CONCLUSIONS: This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification.

16.
BMC Genomics ; 8: 165, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17565682

RESUMO

BACKGROUND: Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18-22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. RESULTS: 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. CONCLUSION: Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.


Assuntos
Cartilagem , Condrócitos/metabolismo , Perfilação da Expressão Gênica , Genes/genética , Genoma Humano , Feto , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Diagn Ther ; 21(5): 571-579, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28639239

RESUMO

INTRODUCTION: We compared mutations detected in EGFR, KRAS, and BRAF genes using next-generation sequencing (NGS) and confirmed by Sanger sequencing with mutations that could be detected by FDA-cleared testing kits. METHODS: Paraffin-embedded tissue from 822 patients was tested for mutations in EGFR, KRAS, and BRAF by NGS. Sanger sequencing of hot spots was used with locked nucleic acid to increase sensitivity for specific hot-spot mutations. This included 442 (54%) lung cancers, 168 (20%) colorectal cancers, 29 (4%) brain tumors, 33 (4%) melanomas, 14 (2%) thyroid cancers, and 16% others (pancreas, head and neck, and cancer of unknown origin). Results were compared with the approved list of detectable mutations in FDA kits for EGFR, KRAS, and BRAF. RESULTS: Of the 101 patients with EGFR abnormalities as detected by NGS, only 58 (57%) were detectable by cobas v2 and only 35 (35%) by therascreen. Therefore, 42 and 65%, respectively, more mutations were detected by NGS, including two patients with EGFR amplification. Of the 117 patients with BRAF mutation detected by NGS, 62 (53%) mutations were within codon 600, detectable by commercial kits, but 55 (47%) of the mutations were outside codon V600, detected by NGS only. Of the 321 patients with mutations in KRAS detected by NGS, 284 (88.5%) had mutations detectable by therascreen and 300 (93.5%) had mutations detectable by cobas. Therefore, 11.5 and 6.5% additional KRAS mutations were detected by NGS, respectively. CONCLUSION: NGS provides significantly more comprehensive testing for mutations as compared with FDA-cleared kits currently available commercially.


Assuntos
Análise Mutacional de DNA/métodos , Receptores ErbB/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Feminino , Humanos , Masculino , Inclusão em Parafina , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade , Estados Unidos , United States Food and Drug Administration
18.
PLoS One ; 12(9): e0184590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880957

RESUMO

Dysregulation of MST1/STK4, a key kinase component of the Hippo-YAP pathway, is linked to the etiology of many cancers with poor prognosis. However, how STK4 restricts the emergence of aggressive cancer remains elusive. Here, we investigated the effects of STK4, primarily localized in the cytoplasm, lipid raft, and nucleus, on cell growth and gene expression in aggressive prostate cancer. We demonstrated that lipid raft and nuclear STK4 had superior suppressive effects on cell growth in vitro and in vivo compared with cytoplasmic STK4. Using RNA sequencing and bioinformatics analysis, we identified several differentially expressed (DE) genes that responded to ectopic STK4 in all three subcellular compartments. We noted that the number of DE genes observed in lipid raft and nuclear STK4 cells were much greater than cytoplasmic STK4. Our functional annotation clustering showed that these DE genes were commonly associated with oncogenic pathways such as AR, PI3K/AKT, BMP/SMAD, GPCR, WNT, and RAS as well as unique pathways such as JAK/STAT, which emerged only in nuclear STK4 cells. These findings indicate that MST1/STK4/Hippo signaling restricts aggressive tumor cell growth by intersecting with multiple molecular pathways, suggesting that targeting of the STK4/Hippo pathway may have important therapeutic implications for cancer.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Biologia Computacional , Citoplasma/metabolismo , Imunofluorescência , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
19.
Sci Rep ; 7(1): 3448, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615632

RESUMO

Small non-coding RNAs, in particular microRNAs (miRNAs), regulate fine-tuning of gene expression and can impact a wide range of biological processes. However, their roles in normal and diseased limbal epithelial stem cells (LESC) remain unknown. Using deep sequencing analysis, we investigated miRNA expression profiles in central and limbal regions of normal and diabetic human corneas. We identified differentially expressed miRNAs in limbus vs. central cornea in normal and diabetic (DM) corneas including both type 1 (T1DM/IDDM) and type 2 (T2DM/NIDDM) diabetes. Some miRNAs such as miR-10b that was upregulated in limbus vs. central cornea and in diabetic vs. normal limbus also showed significant increase in T1DM vs. T2DM limbus. Overexpression of miR-10b increased Ki-67 staining in human organ-cultured corneas and proliferation rate in cultured corneal epithelial cells. MiR-10b transfected human organ-cultured corneas showed downregulation of PAX6 and DKK1 and upregulation of keratin 17 protein expression levels. In summary, we report for the first time differential miRNA signatures of T1DM and T2DM corneal limbus harboring LESC and show that miR-10b could be involved in the LESC maintenance and/or their early differentiation. Furthermore, miR-10b upregulation may be an important mechanism of corneal diabetic alterations especially in the T1DM patients.


Assuntos
Diabetes Mellitus/genética , Estudo de Associação Genômica Ampla , Limbo da Córnea/metabolismo , MicroRNAs , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Células Cultivadas , Biologia Computacional , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ontologia Genética , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Interferência de RNA , Reprodutibilidade dos Testes
20.
Sci Rep ; 7(1): 12078, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935958

RESUMO

The transcriptional regulator Blimp1 plays crucial roles in controlling terminal differentiation in several lineages. In T cells, Blimp1 is expressed in both effector (Teff) and regulatory (Treg) cells, and mice with T cell-specific deletion of Blimp1 (Blimp1CKO mice) spontaneously develop severe intestinal inflammation, indicating a crucial role for Blimp1 in T cell homeostasis regulation. Blimp1 has been shown to function as a direct activator of the Il10 gene and although its requirement for IL10 expression has been demonstrated in both Treg and Teff cells under inflammatory conditions, the intrinsic requirement of Blimp1 for homeostatic maintenance of these T cell subsets had not been investigated. Using mice with Foxp3+ Treg-cell specific deletion of Blimp1 and other approaches, here we show that Foxp3+ Treg cell-intrinsic expression of Blimp1 is required to control Treg and Teff cells homeostasis but, unexpectedly, it is dispensable to prevent development of severe spontaneous intestinal inflammation. In addition, we show that Blimp1 controls common and unique aspects of Treg and Teff cell function by differentially regulating gene expression in these T cell subsets. These findings document previously unappreciated aspects of Blimp1's role in T cell biology and shed light on the intricate mechanisms regulating Treg and Teff cell function.


Assuntos
Perfilação da Expressão Gênica , Homeostase/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Linfócitos T Reguladores/imunologia , Animais , Citocinas/imunologia , Citocinas/metabolismo , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Homeostase/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA