Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(1): 66-80, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995504

RESUMO

Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.


Assuntos
Processamento Alternativo , Fatores de Risco Cardiometabólico , Regulação da Expressão Gênica , Locos de Características Quantitativas , Característica Quantitativa Herdável , Gordura Subcutânea/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Biologia Computacional/métodos , Éxons , Finlândia , Genes Reporter , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Receptores X do Fígado/genética , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Anotação de Sequência Molecular , Fenótipo , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNA
2.
PLoS Comput Biol ; 20(4): e1012016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630807

RESUMO

Network inference is used to model transcriptional, signaling, and metabolic interactions among genes, proteins, and metabolites that identify biological pathways influencing disease pathogenesis. Advances in machine learning (ML)-based inference models exhibit the predictive capabilities of capturing latent patterns in genomic data. Such models are emerging as an alternative to the statistical models identifying causative factors driving complex diseases. We present CoVar, an ML-based framework that builds upon the properties of existing inference models, to find the central genes driving perturbed gene expression across biological states. Unlike differentially expressed genes (DEGs) that capture changes in individual gene expression across conditions, CoVar focuses on identifying variational genes that undergo changes in their expression network interaction profiles, providing insights into changes in the regulatory dynamics, such as in disease pathogenesis. Subsequently, it finds core genes from among the nearest neighbors of these variational genes, which are central to the variational activity and influence the coordinated regulatory processes underlying the observed changes in gene expression. Through the analysis of simulated as well as yeast expression data perturbed by the deletion of the mitochondrial genome, we show that CoVar captures the intrinsic variationality and modularity in the expression data, identifying key driver genes not found through existing differential analysis methodologies.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Aprendizado de Máquina , Redes Reguladoras de Genes/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Algoritmos , Regulação da Expressão Gênica/genética , Simulação por Computador
3.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019944

RESUMO

MOTIVATION: Analysis of open chromatin regions across multiple samples from two or more distinct conditions can determine altered gene regulatory patterns associated with biological phenotypes and complex traits. The ATAC-seq assay allows for tractable genome-wide open chromatin profiling of large numbers of samples. Stable, broadly applicable genomic annotations of open chromatin regions are not available. Thus, most studies first identify open regions using peak calling methods for each sample independently. These are then heuristically combined to obtain a consensus peak set. Reconciling sample-specific peak results post hoc from larger cohorts is particularly challenging, and informative spatial features specific to open chromatin signals are not leveraged effectively. RESULTS: We propose a novel method, ROCCO, that determines consensus open chromatin regions across multiple samples simultaneously. ROCCO employs robust summary statistics and solves a constrained optimization problem formulated to account for both enrichment and spatial dependence of open chromatin signal data. We show this formulation admits attractive theoretical and conceptual properties as well as superior empirical performance compared to current methodology. AVAILABILITY AND IMPLEMENTATION: Source code, documentation, and usage demos for ROCCO are available on GitHub at: https://github.com/nolan-h-hamilton/ROCCO. ROCCO can also be installed as a stand-alone binary utility using pip/PyPI.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Cromatina/genética , Genômica , Software , Genoma
4.
J Toxicol Environ Health B Crit Rev ; 26(6): 307-341, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37246822

RESUMO

The purpose of this study was to determine the toxicological and pharmacokinetic properties of sucralose-6-acetate, a structural analog of the artificial sweetener sucralose. Sucralose-6-acetate is an intermediate and impurity in the manufacture of sucralose, and recent commercial sucralose samples were found to contain up to 0.67% sucralose-6-acetate. Studies in a rodent model found that sucralose-6-acetate is also present in fecal samples with levels up to 10% relative to sucralose which suggest that sucralose is also acetylated in the intestines. A MultiFlow® assay, a high-throughput genotoxicity screening tool, and a micronucleus (MN) test that detects cytogenetic damage both indicated that sucralose-6-acetate is genotoxic. The mechanism of action was classified as clastogenic (produces DNA strand breaks) using the MultiFlow® assay. The amount of sucralose-6-acetate in a single daily sucralose-sweetened drink might far exceed the threshold of toxicological concern for genotoxicity (TTCgenotox) of 0.15 µg/person/day. The RepliGut® System was employed to expose human intestinal epithelium to sucralose-6-acetate and sucralose, and an RNA-seq analysis was performed to determine gene expression induced by these exposures. Sucralose-6-acetate significantly increased the expression of genes associated with inflammation, oxidative stress, and cancer with greatest expression for the metallothionein 1 G gene (MT1G). Measurements of transepithelial electrical resistance (TEER) and permeability in human transverse colon epithelium indicated that sucralose-6-acetate and sucralose both impaired intestinal barrier integrity. Sucralose-6-acetate also inhibited two members of the cytochrome P450 family (CYP1A2 and CYP2C19). Overall, the toxicological and pharmacokinetic findings for sucralose-6-acetate raise significant health concerns regarding the safety and regulatory status of sucralose itself.


Assuntos
Sacarose , Edulcorantes , Humanos , Sacarose/toxicidade , Sacarose/química , Sacarose/metabolismo , Edulcorantes/toxicidade , Edulcorantes/metabolismo , Projetos de Pesquisa , Fezes/química
5.
Cell ; 132(2): 311-22, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243105

RESUMO

Mapping DNase I hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed high-throughput sequencing and whole-genome tiled array strategies to identify DNase I HS sites within human primary CD4+ T cells. Combining these two technologies, we have created a comprehensive and accurate genome-wide open chromatin map. Surprisingly, only 16%-21% of the identified 94,925 DNase I HS sites are found in promoters or first exons of known genes, but nearly half of the most open sites are in these regions. In conjunction with expression, motif, and chromatin immunoprecipitation data, we find evidence of cell-type-specific characteristics, including the ability to identify transcription start sites and locations of different chromatin marks utilized in these cells. In addition, and unexpectedly, our analyses have uncovered detailed features of nucleosome structure.


Assuntos
Cromatina/genética , Genoma Humano/genética , Algoritmos , Área Sob a Curva , Sítios de Ligação , Linfócitos T CD4-Positivos/citologia , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Cromossomos Humanos , Desoxirribonuclease I/química , Desoxirribonuclease I/farmacologia , Genoma Humano/imunologia , Histonas/química , Humanos , Nucleossomos/química , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Curva ROC , Sensibilidade e Especificidade , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
6.
PLoS Genet ; 16(1): e1008537, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961859

RESUMO

Gene transcription profiles across tissues are largely defined by the activity of regulatory elements, most of which correspond to regions of accessible chromatin. Regulatory element activity is in turn modulated by genetic variation, resulting in variable transcription rates across individuals. The interplay of these factors, however, is poorly understood. Here we characterize expression and chromatin state dynamics across three tissues-liver, lung, and kidney-in 47 strains of the Collaborative Cross (CC) mouse population, examining the regulation of these dynamics by expression quantitative trait loci (eQTL) and chromatin QTL (cQTL). QTL whose allelic effects were consistent across tissues were detected for 1,101 genes and 133 chromatin regions. Also detected were eQTL and cQTL whose allelic effects differed across tissues, including local-eQTL for Pik3c2g detected in all three tissues but with distinct allelic effects. Leveraging overlapping measurements of gene expression and chromatin accessibility on the same mice from multiple tissues, we used mediation analysis to identify chromatin and gene expression intermediates of eQTL effects. Based on QTL and mediation analyses over multiple tissues, we propose a causal model for the distal genetic regulation of Akr1e1, a gene involved in glycogen metabolism, through the zinc finger transcription factor Zfp985 and chromatin intermediates. This analysis demonstrates the complexity of transcriptional and chromatin dynamics and their regulation over multiple tissues, as well as the value of the CC and related genetic resource populations for identifying specific regulatory mechanisms within cells and tissues.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Locos de Características Quantitativas , Animais , Cromatina/genética , Cromatina/metabolismo , Rim/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L33-L49, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755540

RESUMO

Acute ozone (O3) exposure is associated with multiple adverse cardiorespiratory outcomes, the severity of which varies across individuals in human populations and inbred mouse strains. However, molecular determinants of response, including susceptibility biomarkers that distinguish who will develop severe injury and inflammation, are not well characterized. We and others have demonstrated that airway macrophages (AMs) are an important resident immune cell type that are functionally and transcriptionally responsive to O3 inhalation. Here, we sought to explore influences of strain, exposure, and strain-by-O3 exposure interactions on AM gene expression and identify transcriptional correlates of O3-induced inflammation and injury across six mouse strains, including five Collaborative Cross (CC) strains. We exposed adult mice of both sexes to filtered air (FA) or 2 ppm O3 for 3 h and measured inflammatory and injury parameters 21 h later. Mice exposed to O3 developed airway neutrophilia and lung injury with strain-dependent severity. In AMs, we identified a common core O3 transcriptional response signature across all strains, as well as a set of genes exhibiting strain-by-O3 exposure interactions. In particular, a prominent gene expression contrast emerged between a low- (CC017/Unc) and high-responding (CC003/Unc) strain, as reflected by cellular inflammation and injury. Further inspection indicated that differences in their baseline gene expression and chromatin accessibility profiles likely contribute to their divergent post-O3 exposure transcriptional responses. Together, these results suggest that aspects of O3-induced respiratory responses are mediated through altered AM transcriptional signatures and further confirm the importance of gene-environment interactions in mediating differential responsiveness to environmental agents.


Assuntos
Pulmão/patologia , Macrófagos/metabolismo , Ozônio/efeitos adversos , Animais , Cromatina/metabolismo , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564431

RESUMO

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Expressão Gênica , Obesidade/genética , Alelos , Índice de Massa Corporal , Finlândia , Estudo de Associação Genômica Ampla , Humanos , Masculino , Locos de Características Quantitativas , Relação Cintura-Quadril
9.
PLoS Biol ; 15(8): e2002054, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28850571

RESUMO

The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology.


Assuntos
Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , RNA Mensageiro/metabolismo , Smegmamorpha/metabolismo , Peixe-Zebra/metabolismo , Animais , California , Colo/citologia , Colo/crescimento & desenvolvimento , Colo/metabolismo , Duodeno/citologia , Duodeno/crescimento & desenvolvimento , Duodeno/metabolismo , Feminino , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária , Genômica/métodos , Humanos , Íleo/citologia , Íleo/crescimento & desenvolvimento , Íleo/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/crescimento & desenvolvimento , Jejuno/citologia , Jejuno/crescimento & desenvolvimento , Jejuno/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Rios , Smegmamorpha/crescimento & desenvolvimento , Especificidade da Espécie , Peixe-Zebra/crescimento & desenvolvimento
10.
Gut ; 67(1): 36-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742763

RESUMO

OBJECTIVE: The clinical presentation and course of Crohn's disease (CD) is highly variable. We sought to better understand the cellular and molecular mechanisms that guide this heterogeneity, and characterise the cellular processes associated with disease phenotypes. DESIGN: We examined both gene expression and gene regulation (chromatin accessibility) in non-inflamed colon tissue from a cohort of adult patients with CD and control patients. To support the generality of our findings, we analysed previously published expression data from a large cohort of treatment-naïve paediatric CD and control ileum. RESULTS: We found that adult patients with CD clearly segregated into two classes based on colon tissue gene expression-one that largely resembled the normal colon and one where certain genes showed expression patterns normally specific to the ileum. These classes were supported by changes in gene regulatory profiles observed at the level of chromatin accessibility, reflective of a fundamental shift in underlying molecular phenotypes. Furthermore, gene expression from the ilea of a treatment-naïve cohort of paediatric patients with CD could be similarly subdivided into colon-like and ileum-like classes. Finally, expression patterns within these CD subclasses highlight large-scale differences in the immune response and aspects of cellular metabolism, and were associated with multiple clinical phenotypes describing disease behaviour, including rectal disease and need for colectomy. CONCLUSIONS: Our results strongly suggest that these molecular signatures define two clinically relevant forms of CD irrespective of tissue sampling location, patient age or treatment status.


Assuntos
Doença de Crohn/genética , Adulto , Fatores Etários , Estudos de Casos e Controles , Criança , Colo/metabolismo , Doença de Crohn/classificação , Doença de Crohn/metabolismo , Doença de Crohn/terapia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Íleo/metabolismo , Masculino , Fenótipo , Análise de Componente Principal , Prognóstico
11.
Mamm Genome ; 29(1-2): 153-167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29429127

RESUMO

Epigenetic effects of environmental chemicals are under intense investigation to fill existing knowledge gaps between environmental/occupational exposures and adverse health outcomes. Chromatin accessibility is one prominent mechanism of epigenetic control of transcription, and understanding of the chemical effects on both could inform the causal role of epigenetic alterations in disease mechanisms. In this study, we hypothesized that baseline variability in chromatin organization and transcription profiles among various tissues and mouse strains influence the outcome of exposure to the DNA damaging chemical 1,3-butadiene. To test this hypothesis, we evaluated DNA damage along with comprehensive quantification of RNA transcripts (RNA-seq), identification of accessible chromatin (ATAC-seq), and characterization of regions with histone modifications associated with active transcription (ChIP-seq for acetylation at histone 3 lysine 27, H3K27ac). We collected these data in the lung, liver, and kidney of mice from two genetically divergent strains, C57BL/6J and CAST/EiJ, that were exposed to clean air or to 1,3-butadiene (~600 ppm) for 2 weeks. We found that tissue effects dominate differences in both gene expression and chromatin states, followed by strain effects. At baseline, xenobiotic metabolism was consistently more active in CAST/EiJ, while immune system pathways were more active in C57BL/6J across tissues. Surprisingly, even though all three tissues in both strains harbored butadiene-induced DNA damage, little transcriptional effect of butadiene was observed in liver and kidney. Toxicologically relevant effects of butadiene in the lung were on the pathways of xenobiotic metabolism and inflammation. We also found that variability in chromatin accessibility across individuals (i.e., strains) only partially explains the variability in transcription. This study showed that variation in the basal states of epigenome and transcriptome may be useful indicators for individuals or tissues susceptible to genotoxic environmental chemicals.


Assuntos
Dano ao DNA/efeitos dos fármacos , Epigênese Genética , Transcrição Gênica/genética , Transcriptoma/genética , Animais , Butadienos/toxicidade , Carcinógenos/toxicidade , Cromatina/efeitos dos fármacos , Histonas/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Testes de Mutagenicidade , Especificidade de Órgãos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
12.
Bioinformatics ; 33(7): 956-963, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993786

RESUMO

Motivation: Identifying the locations of transcription factor binding sites is critical for understanding how gene transcription is regulated across different cell types and conditions. Chromatin accessibility experiments such as DNaseI sequencing (DNase-seq) and Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) produce genome-wide data that include distinct 'footprint' patterns at binding sites. Nearly all existing computational methods to detect footprints from these data assume that footprint signals are highly homogeneous across footprint sites. Additionally, a comprehensive and systematic comparison of footprinting methods for specifically identifying which motif sites for a specific factor are bound has not been performed. Results: Using DNase-seq data from the ENCODE project, we show that a large degree of previously uncharacterized site-to-site variability exists in footprint signal across motif sites for a transcription factor. To model this heterogeneity in the data, we introduce a novel, supervised learning footprinter called Detecting Footprints Containing Motifs (DeFCoM). We compare DeFCoM to nine existing methods using evaluation sets from four human cell-lines and eighteen transcription factors and show that DeFCoM outperforms current methods in determining bound and unbound motif sites. We also analyze the impact of several biological and technical factors on the quality of footprint predictions to highlight important considerations when conducting footprint analyses and assessing the performance of footprint prediction methods. Finally, we show that DeFCoM can detect footprints using ATAC-seq data with similar accuracy as when using DNase-seq data. Availability and Implementation: Python code available at https://bitbucket.org/bryancquach/defcom. Contact: bquach@email.unc.edu or tsfurey@email.unc.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Pegada de DNA/métodos , Genômica/métodos , Modelos Moleculares , Motivos de Nucleotídeos/genética , Software , Fatores de Transcrição/metabolismo , Área Sob a Curva , Sequência de Bases , Sítios de Ligação/genética , Desoxirribonuclease I/metabolismo , Humanos , Células K562 , Ligação Proteica/genética , Análise de Sequência de DNA/métodos
14.
Nat Rev Genet ; 13(12): 840-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23090257

RESUMO

Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) detect protein-DNA binding events and chemical modifications of histone proteins. Challenges in the standard ChIP-seq protocol have motivated recent enhancements in this approach, such as reducing the number of cells that are required and increasing the resolution. Complementary experimental approaches - for example, DNaseI hypersensitive site mapping and analysis of chromatin interactions that are mediated by particular proteins - provide additional information about DNA-binding proteins and their function. These data are now being used to identify variability in the functions of DNA-binding proteins across genomes and individuals. In this Review, I describe the latest advances in methods to detect and functionally characterize DNA-bound proteins.


Assuntos
Imunoprecipitação da Cromatina/métodos , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina/normas , Imunoprecipitação da Cromatina/tendências , DNA/genética , DNA/metabolismo , Pegada de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Ligação Proteica , Análise de Sequência de DNA/métodos , Sitios de Sequências Rotuladas
15.
BMC Bioinformatics ; 18(1): 357, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28764645

RESUMO

BACKGROUND: High-throughput sequence (HTS) data exhibit position-specific nucleotide biases that obscure the intended signal and reduce the effectiveness of these data for downstream analyses. These biases are particularly evident in HTS assays for identifying regulatory regions in DNA (DNase-seq, ChIP-seq, FAIRE-seq, ATAC-seq). Biases may result from many experiment-specific factors, including selectivity of DNA restriction enzymes and fragmentation method, as well as sequencing technology-specific factors, such as choice of adapters/primers and sample amplification methods. RESULTS: We present a novel method to detect and correct position-specific nucleotide biases in HTS short read data. Our method calculates read-specific weights based on aligned reads to correct the over- or underrepresentation of position-specific nucleotide subsequences, both within and adjacent to the aligned read, relative to a baseline calculated in assay-specific enriched regions. Using HTS data from a variety of ChIP-seq, DNase-seq, FAIRE-seq, and ATAC-seq experiments, we show that our weight-adjusted reads reduce the position-specific nucleotide imbalance across reads and improve the utility of these data for downstream analyses, including identification and characterization of open chromatin peaks and transcription-factor binding sites. CONCLUSIONS: A general-purpose method to characterize and correct position-specific nucleotide sequence biases fills the need to recognize and deal with, in a systematic manner, binding-site preference for the growing number of HTS-based epigenetic assays. As the breadth and impact of these biases are better understood, the availability of a standard toolkit to correct them will be important.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos/genética , Sequência de Bases , Viés , Sítios de Ligação , Biologia Computacional , DNA/metabolismo , Desoxirribonucleases/metabolismo , Análise de Componente Principal , Ligação Proteica , Análise de Sequência de DNA
16.
Eur J Immunol ; 46(8): 1912-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27159132

RESUMO

Intestinal macrophages (IMs) are uniquely programmed to tolerate exposure to bacteria without mounting potent inflammatory responses. The cytokine IL-10 maintains the macrophage anti-inflammatory response such that loss of IL-10 results in chronic intestinal inflammation. To investigate how IL-10-deficiency alters IM programming and bacterial tolerance, we studied changes in chromatin accessibility in response to bacteria in macrophages from two distinct niches, the intestine and bone-marrow, from both wild-type and IL-10-deficient (Il10(-/-) ) mice. We identified chromatin accessibility changes associated with bacterial exposure and IL-10 deficiency in both bone marrow derived macrophages and IMs. Surprisingly, Il10(-/-) IMs adopted chromatin and gene expression patterns characteristic of an inflammatory response, even in the absence of bacteria. Further, when recombinant IL-10 was added to Il10(-/-) cells, it could not revert the chromatin landscape to a normal state. Our results demonstrate that IL-10 deficiency results in stable chromatin alterations in macrophages, even in the absence of bacteria. This supports a model in which IL-10-deficiency leads to chromatin alterations that contribute to a loss of IM tolerance to bacteria, which is a primary initiating event in chronic intestinal inflammation.


Assuntos
Cromatina/metabolismo , Inflamação/imunologia , Interleucina-10/genética , Intestinos/fisiopatologia , Macrófagos/metabolismo , Animais , Citocinas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Humanos , Tolerância Imunológica , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Genome Res ; 24(2): 241-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24158655

RESUMO

Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting ∼25% of all expressed genes. Furthermore, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds.


Assuntos
Carcinoma de Células Renais/genética , Cromatina/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias Renais/patologia , Mutação , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/genética , Splicing de RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
18.
Bioinformatics ; 32(5): 650-6, 2016 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26543175

RESUMO

MOTIVATION: Advances in chromosome conformation capture and next-generation sequencing technologies are enabling genome-wide investigation of dynamic chromatin interactions. For example, Hi-C experiments generate genome-wide contact frequencies between pairs of loci by sequencing DNA segments ligated from loci in close spatial proximity. One essential task in such studies is peak calling, that is, detecting non-random interactions between loci from the two-dimensional contact frequency matrix. Successful fulfillment of this task has many important implications including identifying long-range interactions that assist interpreting a sizable fraction of the results from genome-wide association studies. The task - distinguishing biologically meaningful chromatin interactions from massive numbers of random interactions - poses great challenges both statistically and computationally. Model-based methods to address this challenge are still lacking. In particular, no statistical model exists that takes the underlying dependency structure into consideration. RESULTS: In this paper, we propose a hidden Markov random field (HMRF) based Bayesian method to rigorously model interaction probabilities in the two-dimensional space based on the contact frequency matrix. By borrowing information from neighboring loci pairs, our method demonstrates superior reproducibility and statistical power in both simulation studies and real data analysis. AVAILABILITY AND IMPLEMENTATION: The Source codes can be downloaded at: http://www.unc.edu/∼yunmli/HMRFBayesHiC CONTACT: ming.hu@nyumc.org or yunli@med.unc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromossomos , Teorema de Bayes , Estudo de Associação Genômica Ampla , Cadeias de Markov , Reprodutibilidade dos Testes
19.
Genome Res ; 23(7): 1118-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23657885

RESUMO

DNase-seq is primarily used to identify nucleosome-depleted DNase I hypersensitive (DHS) sites genome-wide that correspond to active regulatory elements. However, ≈ 40 yr ago it was demonstrated that DNase I also digests with a ≈ 10-bp periodicity around nucleosomes matching the exposure of the DNA minor groove as it wraps around histones. Here, we use DNase-seq data from 49 samples representing diverse cell types to reveal this digestion pattern at individual loci and predict genomic locations where nucleosome rotational positioning, the orientation of DNA with respect to the histone surface, is stably maintained. We call these regions DNase I annotated regions of nucleosome stability (DARNS). Compared to MNase-seq experiments, we show DARNS correspond well to annotated nucleosomes. Interestingly, many DARNS are positioned over only one side of annotated nucleosomes, suggesting that the periodic digestion pattern attenuates over the nucleosome dyad. DARNS reproduce the arrangement of nucleosomes around transcription start sites and are depleted at ubiquitous DHS sites. We also generated DARNS from multiple lymphoblast cell line (LCL) samples. We found that LCL DARNS were enriched at DHS sites present in most of the original 49 samples but absent in LCLs, while multi-cell-type DARNS were enriched at LCL-specific DHS sites. This indicates that variably open DHS sites are often occupied by rotationally stable nucleosomes in cell types where the DHS site is closed. DARNS provide additional information about precise DNA orientation within individual nucleosomes not available from other nucleosome positioning assays and contribute to understanding the role of chromatin in gene regulation.


Assuntos
DNA/genética , DNA/metabolismo , Desoxirribonucleases/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Sítios de Ligação , Linhagem Celular , Desoxirribonuclease I/metabolismo , Loci Gênicos , Genômica , Humanos , Ligação Proteica
20.
Genome Res ; 23(5): 777-88, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23482648

RESUMO

Regulatory elements recruit transcription factors that modulate gene expression distinctly across cell types, but the relationships among these remains elusive. To address this, we analyzed matched DNase-seq and gene expression data for 112 human samples representing 72 cell types. We first defined more than 1800 clusters of DNase I hypersensitive sites (DHSs) with similar tissue specificity of DNase-seq signal patterns. We then used these to uncover distinct associations between DHSs and promoters, CpG islands, conserved elements, and transcription factor motif enrichment. Motif analysis within clusters identified known and novel motifs in cell-type-specific and ubiquitous regulatory elements and supports a role for AP-1 regulating open chromatin. We developed a classifier that accurately predicts cell-type lineage based on only 43 DHSs and evaluated the tissue of origin for cancer cell types. A similar classifier identified three sex-specific loci on the X chromosome, including the XIST lincRNA locus. By correlating DNase I signal and gene expression, we predicted regulated genes for more than 500K DHSs. Finally, we introduce a web resource to enable researchers to use these results to explore these regulatory patterns and better understand how expression is modulated within and across human cell types.


Assuntos
Células/metabolismo , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I/genética , Elementos Reguladores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sítios de Ligação/genética , Células/classificação , Células/citologia , Cromatina/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica , Genoma Humano , Humanos , Hipersensibilidade , Especificidade de Órgãos , Ligação Proteica/genética , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA