Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 65(4): 685-698.e8, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28190769

RESUMO

RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , RNA Fúngico/biossíntese , RNA Mensageiro/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Genótipo , Mutação , Proteínas Nucleares/genética , Fenótipo , Fosforilação , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
2.
EMBO J ; 39(22): e105604, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33034091

RESUMO

Cooling patients to sub-physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature-specific changes to the higher-order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18°C, a temperature synonymous with that experienced by patients undergoing controlled deep hypothermia during surgery. Cells exposed to 18°C exhibit largely nuclear-restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV-ERBα. This response is accompanied by compaction of higher-order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold-induced upregulation of REV-ERBα is sufficient to trigger this reset. Our findings uncover principles of the cellular cold response that must be considered for current and future applications involving therapeutic deep hypothermia.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Ritmo Circadiano/fisiologia , Temperatura Baixa , RNA Mensageiro/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Técnicas de Inativação de Genes , Heterocromatina , Humanos , Hipotermia/cirurgia , Ativação Transcricional , Transcriptoma , Regulação para Cima
3.
EMBO Rep ; 23(10): e54520, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35980303

RESUMO

CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Cromatina/genética , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA/genética , Transcrição Gênica , Fatores de Poliadenilação e Clivagem de mRNA/genética
4.
Nucleic Acids Res ; 47(14): 7580-7591, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31147722

RESUMO

Alternative cleavage and polyadenylation (APA) can occur at more than half of all human genes, greatly enhancing the cellular repertoire of mRNA isoforms. As these isoforms can have altered stability, localisation and coding potential, deregulation of APA can disrupt gene expression and this has been linked to many diseases including cancer progression. How APA generates cancer-specific isoform profiles and what their physiological consequences are, however, is largely unclear. Here we use a subcellular fractionation approach to determine the nuclear and cytoplasmic APA profiles of successive stages of colon cancer using a cell line-based model. Using this approach, we show that during cancer progression specific APA profiles are established. We identify that overexpression of hnRNPC has a critical role in the establishment of APA profiles characteristic for metastatic colon cancer cells, by regulating poly(A) site selection in a subset of genes that have been implicated in cancer progression including MTHFD1L.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Neoplasias/genética , Poliadenilação , Isoformas de RNA/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Poli A/genética , Poli A/metabolismo , Interferência de RNA
5.
Genome Res ; 26(1): 24-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26546131

RESUMO

Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice.


Assuntos
RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Poliadenilação , Splicing de RNA , Ribonuclease III/genética , Regiões 3' não Traduzidas , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metalochaperonas/genética , Metalochaperonas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade de RNA , Ribonuclease III/metabolismo
6.
RNA Biol ; 14(7): 865-890, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28453393

RESUMO

Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.


Assuntos
Poliadenilação/genética , RNA Mensageiro/metabolismo , Animais , Humanos , Modelos Biológicos , Capuzes de RNA/metabolismo , Clivagem do RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética
7.
PLoS Genet ; 9(11): e1003943, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278030

RESUMO

Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment.


Assuntos
Apoptose/efeitos da radiação , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , RNA Ribossômico/biossíntese , Ribossomos/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Células Germinativas/efeitos da radiação , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação Puntual , RNA Polimerase I/genética , RNA Ribossômico/efeitos da radiação , Radiação Ionizante , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
8.
EMBO J ; 29(9): 1523-36, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20339349

RESUMO

We have analysed the sequences required for cleavage and polyadenylation in the intronless melanocortin 4 receptor (MC4R) pre-mRNA. Unlike other intronless genes, 3'end processing of the MC4R primary transcript is independent of any auxiliary sequence elements and only requires the core poly(A) sequences. Mutation of the AUUAAA hexamer had little effect on MC4R 3'end processing but small changes in the short DSE severely reduced cleavage efficiency. The MC4R poly(A) site requires only the DSE and an A-rich upstream sequence to direct efficient cleavage and polyadenylation. Our observation may be highly relevant for the understanding of how human noncanonical poly(A) sites are recognised. This is supported by a genome-wide analysis of over 10 000 poly(A) sites where we show that many human noncanonical poly(A) signals contain A-rich upstream sequences and tend to have a higher frequency of U and GU nucleotides in their DSE compared with canonical poly(A) signals. The importance of A-rich elements for noncanonical poly(A) site recognition was confirmed by mutational analysis of the human JUNB gene, which contains an A-rich noncanonical poly(A) signal.


Assuntos
Regiões 3' não Traduzidas , Poli A/genética , Precursores de RNA/genética , Receptor Tipo 4 de Melanocortina/genética , Região 3'-Flanqueadora , Adenosina/química , Adenosina/genética , Antígenos de Neoplasias , Sequência de Bases , Linhagem Celular , Proteínas de Ligação a DNA , Humanos , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias , Proteínas Proto-Oncogênicas c-jun/genética , Uridina/genética
9.
Biochem Soc Trans ; 42(4): 1190-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25110024

RESUMO

With the advances in deep-sequencing techniques over the last decade, the study of alternative cleavage and polyadenylation (APA) has shifted from individual gene to whole transcriptome analysis. Findings from such global studies have elevated APA to its currently accepted status as a major player in the regulation of eukaryotic gene expression. Although ~70% of human genes have been shown to contain multiple cleavage and polyadenylation sites, the extent of the consequences of APA and its role in regulating physiological processes are still largely unknown. The present review aims to summarize the experimental evidence that supports a physiological role of APA and highlights some of the shortcomings that need addressing to substantiate the widely proposed claim that APA is a key player in global gene regulation.


Assuntos
Poliadenilação/genética , Regiões 3' não Traduzidas/genética , Animais , Humanos , Poliadenilação/fisiologia , RNA/genética
10.
Nucleic Acids Res ; 40(13): 6304-18, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22467213

RESUMO

Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Poliadenilação , Análise de Sequência de RNA , Animais , Caenorhabditis elegans/metabolismo , Fracionamento Celular/métodos , Núcleo Celular/genética , Citometria de Fluxo , Mucosa Intestinal/metabolismo , Transcriptoma
11.
Nucleic Acids Res ; 39(6): 2378-92, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21071418

RESUMO

Alternative splicing enables higher eukaryotes to increase their repertoire of proteins derived from a restricted number of genes. However, the possibility that functional diversity may also be augmented by splicing between adjacent genes has been largely neglected. Here, we show that the human melanocortin 1 receptor (MC1R) gene, a critical component of the facultative skin pigmentation system, has a highly complex and inefficient poly(A) site which is instrumental in allowing intergenic splicing between this locus and its immediate downstream neighbour tubulin-ß-III (TUBB3). These transcripts, which produce two distinct protein isoforms localizing to the plasma membrane and the endoplasmic reticulum, seem to be restricted to humans as no detectable chimeric mRNA could be found in MC1R expressing mouse melanocytes. Significantly, treatment with the MC1R agonist α-MSH or activation of the stress response kinase p38-MAPK, both key molecules associated with ultraviolet radiation dermal insult and subsequent skin tanning, result in a shift in expression from MC1R in favour of chimeric MC1R-TUBB3 isoforms in cultured melanocytes. We propose that these chimeric proteins serve to equip melanocytes with novel cellular phenotypes required as part of the pigmentation response.


Assuntos
Processamento Alternativo , Melanócitos/metabolismo , Receptor Tipo 1 de Melanocortina/genética , Tubulina (Proteína)/genética , alfa-MSH/farmacologia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase 6/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/enzimologia , Camundongos , Dados de Sequência Molecular , Processamento de Terminações 3' de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Tubulina (Proteína)/metabolismo
12.
Nucleic Acids Res ; 37(20): 6723-36, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19740764

RESUMO

The current predicted mechanisms that describe RNA polymerase II (pol II) transcription termination downstream of protein expressing genes fail to adequately explain, how premature termination is prevented in eukaryotes that possess operon-like structures. Here we address this issue by analysing transcription termination at the end of single protein expressing genes and genes located within operons in the nematode Caenorhabditis elegans. By using a combination of RT-PCR and ChIP analysis we found that pol II generally transcribes up to 1 kb past the poly(A) sites into the 3' flanking regions of the nematode genes before it terminates. We also show that pol II does not terminate after transcription of internal poly(A) sites in operons. We provide experimental evidence that five randomly chosen C. elegans operons are transcribed as polycistronic pre-mRNAs. Furthermore, we show that cis-splicing of the first intron located in downstream positioned genes in these polycistronic pre-mRNAs is critical for their expression and may play a role in preventing premature pol II transcription termination.


Assuntos
Caenorhabditis/genética , DNA Polimerase II/metabolismo , Regulação da Expressão Gênica , Animais , Íntrons , Óperon , Interferência de RNA , Splicing de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/antagonistas & inibidores , Trans-Splicing , Transcrição Gênica
13.
Mol Cell Biol ; 27(5): 1568-80, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17189425

RESUMO

Cleavage and polyadenylation is an essential processing reaction required for the maturation of pre-mRNAs into stable, export- and translation-competent mature mRNA molecules. This reaction requires the assembly of a multimeric protein complex onto a bipartite core sequence element consisting of an AAUAAA hexamer and a GU/U-rich downstream sequence element. In this study we have analyzed 3' end processing of the human melanocortin 1 receptor gene (MC1R). The MC1R gene is an intron-free transcription unit, and its poly(A) site lacks a defined U/GU-rich element. We describe two G-rich sequence elements that are critical for efficient cleavage at the MC1R poly(A) site. The first element is located 30 nucleotides downstream of the cleavage site and acts as an essential closely positioned enhancer. The second G-rich region is positioned more than 440 nucleotides downstream of the MC1R processing site and is instrumental for optimal processing efficiency. Both G-rich sequences contain clusters of heterogeneous nuclear ribonucleoprotein binding motifs and act together to enhance cleavage at the MC1R poly(A) site.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Genes Reguladores , Poli A/metabolismo , Processamento Pós-Transcricional do RNA , Receptor Tipo 1 de Melanocortina/genética , Sequências Reguladoras de Ácido Nucleico/genética , Sequência de Bases , Linhagem Celular Transformada , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Genes Reporter , Células HeLa , Humanos , Melanoma/patologia , Poli A/genética , Precursores de RNA/metabolismo
14.
BMC Med Genomics ; 12(1): 60, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072331

RESUMO

BACKGROUND: Transcriptome wide changes have been assessed extensively during the progression of neurodegenerative diseases. Alternative polyadenylation (APA) occurs in over 70% of human protein coding genes and it has recently been recognised as a critical regulator of gene expression during disease. However, the effect of APA in the context of neurodegenerative diseases, to date, has not been widely investigated. Dynamic Analysis of Alternative Polyadenylation from RNA-seq (DaPars) is a method by Xia and colleagues [Nat Commun. 5:5274, 2014] to investigate APA using standard RNA-seq data. Here, we employed this method to interrogate APA using publicly available RNA-seq data from Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic Lateral Sclerosis (ALS) patients and matched healthy individuals. RESULTS: For all three diseases, we found that APA profile changes were limited to a relative small number of genes suggesting that APA is not globally deregulated in neurodegenerative disease. However, for each disease phenotype we identified a subgroup of genes that showed disease-specific deregulation of APA. Whilst the affected genes differ between the RNA-seq datasets, in each cohort we identified an overrepresentation of genes that are associated with protein turnover pathways and mitochondrial function. CONCLUSIONS: Our findings, while drawn from a relatively small sample size, suggest that deregulation of APA may play a significant role in neurodegeneration by altering the expression of genes including UBR1 and OGDHL in AD, LONP1 in PD and UCHL1 in ALS. This report thus provides important novel insights into how APA can shape neurodegenerative disease characteristic transcriptomes.


Assuntos
Doença de Alzheimer/genética , Esclerose Lateral Amiotrófica/genética , Mitocôndrias/patologia , Doença de Parkinson/genética , Poliadenilação , Proteínas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Estudos de Casos e Controles , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas/genética
15.
Mol Cell Biol ; 24(10): 4174-83, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15121839

RESUMO

Polypyrimidine tract binding protein (PTB) is a major hnRNP protein with multiple roles in mRNA metabolism, including regulation of alternative splicing and internal ribosome entry site-driven translation. We show here that a fourfold overexpression of PTB results in a 75% reduction of mRNA levels produced from transfected gene constructs with different polyadenylation signals (pA signals). This effect is due to the reduced efficiency of mRNA 3' end cleavage, and in vitro analysis reveals that PTB competes with CstF for recognition of the pA signal's pyrimidine-rich downstream sequence element. This may be analogous to its role in alternative splicing, where PTB competes with U2AF for binding to pyrimidine-rich intronic sequences. The pA signal of the C2 complement gene unusually possesses a PTB-dependent upstream sequence, so that knockdown of PTB expression by RNA interference reduces C2 mRNA expression even though PTB overexpression still inhibits polyadenylation. Consequently, we show that PTB can act as a regulator of mRNA expression through both its negative and positive effects on mRNA 3' end processing.


Assuntos
Poliadenilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequência de Bases , DNA/genética , Globinas/genética , Células HeLa , Humanos , Técnicas In Vitro , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Dev Cell ; 31(4): 503-11, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25455309

RESUMO

Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico/genética , Meiose/fisiologia , Transdução de Sinais/fisiologia , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/citologia , Segregação de Cromossomos/fisiologia , Transdução de Sinais/genética
17.
J Biol Chem ; 280(44): 36920-5, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16115885

RESUMO

TFIIH is a general transcription and repair factor implicated in RNA polymerase II transcription, nucleotide excision repair, and transcription-coupled repair. Genetic defects in TFIIH lead to three distinct inheritable diseases: xeroderma pigmentosa, Cockayne syndrome, and trichothiodystrophy, with xeroderma pigmentosa patients being highly susceptible to skin cancer. Earlier data revealed that the cyclin H subunit of TFIIH associates with U1 small nuclear RNA, a core-splicing component. In addition to its role in RNA processing U1 small nuclear RNA also regulates diverse stages of transcription by RNA polymerase II both in vivo and in vitro, including abortive initiation and re-initiation. Here we identify structural components of U1 and cyclin H implicated in the direct interaction and show how they affect function. Because of unique features of cyclin H we have developed a new methodology for mapping RNA interaction with the full-length cyclin H polypeptide based on electrospray ionization tandem mass spectrometry. We also demonstrate the importance of U1 stem-loops 1 and 2 for the interaction with cyclin H. Functional assays implicate the identified interaction with U1 in regulation of the activity of the cyclin H associated kinase CDK7.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , RNA Nuclear Pequeno/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Ciclina H , Pegada de DNA , Regulação da Expressão Gênica , Células HeLa , Humanos , Imunoprecipitação , Conformação Proteica , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Transcrição Gênica , Quinase Ativadora de Quinase Dependente de Ciclina
18.
Cell ; 108(4): 501-12, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11909521

RESUMO

The messenger RNA processing reactions of capping, splicing, and polyadenylation occur cotranscriptionally. They not only influence one another's efficiency and specificity, but are also coordinated by transcription. The phosphorylated CTD of RNA polymerase II provides key molecular contacts with these mRNA processing reactions throughout transcriptional elongation and termination.


Assuntos
RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , Transcrição Gênica/fisiologia , Histonas/genética , Histonas/metabolismo , Modelos Genéticos , RNA Mensageiro/genética
19.
Genes Dev ; 16(21): 2792-9, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12414732

RESUMO

Reconstruction of a gene with its introns removed results in reduced levels of cytoplasmic mRNA. This is partly explained by introns promoting the export of mRNA through coupling splicing to nuclear export processes. However, we show here that splicing signals can have a direct role in enhancing gene transcription. Removal of promoter proximal splice signals from a mammalian gene or the excision of introns from two different yeast genes results in a marked reduction in levels of nascent transcription, based on both nuclear run-on and direct image analysis. This further establishes that mRNA processing and transcription are tightly coupled mechanisms.


Assuntos
Regiões Promotoras Genéticas/genética , Sítios de Splice de RNA/genética , Transcrição Gênica , Genes Fúngicos , Genes Virais , HIV-1/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
20.
Hum Mol Genet ; 12(18): 2269-76, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12915484

RESUMO

FBN1 mutations cause Marfan syndrome (MFS), an autosomal dominant disorder of connective tissue. One of the unexplained features of MFS is the pathogenic mechanism that leads to marked inter- and intra-familial clinical variability, despite complete disease penetrance. An FBN1 deletion patient [46,XXdel(15)(q15q22.1)] was identified whose fibrillin-1 protein and mRNA levels were significantly higher than expected for a single FBN1 allele. This suggested that allelic variation in normal FBN1 expression might occur in MFS families, and have potential clinical implications particularly for those with premature termination codon (PTC) mutations who usually display low levels of expression from the mutant allele due to nonsense-mediated decay (NMD). RNA analyses identified a variable reduction in total FBN1 transcript (78+/-2.2 to 27.3+/-2.3%) in three related individuals carrying PTC-causing mutation 932insT, compared with unaffected control individuals. Both pulse chase analysis of fibrillin-1 biosynthesis and RNase protection analyses demonstrated that these differences were due to variation in the expression of the normal FBN1 allele and not NMD of mutant RNA. We suggest that differences in normal FBN1 expression could contribute to the clinical variability seen in this family with MFS, and should be considered as a potential modifier of phenotype in other cases of MFS.


Assuntos
Alelos , Família , Variação Genética , Síndrome de Marfan , Proteínas dos Microfilamentos/metabolismo , Células Cultivadas , Cromossomos Humanos Par 15 , Códon sem Sentido , Feminino , Fibrilina-1 , Fibrilinas , Fibroblastos/patologia , Deleção de Genes , Expressão Gênica , Genes Dominantes , Haplótipos , Humanos , Hibridização in Situ Fluorescente , Masculino , Repetições de Microssatélites , Linhagem , Penetrância , Fenótipo , RNA Mensageiro/análise , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA