Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(49): 24440-24445, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740594

RESUMO

Sugars are essential molecules for all terrestrial biota working in many biological processes. Ribose is particularly essential as a building block of RNA, which could have both stored information and catalyzed reactions in primitive life on Earth. Meteorites contain a number of organic compounds including key building blocks of life, i.e., amino acids, nucleobases, and phosphate. An amino acid has also been identified in a cometary sample. However, the presence of extraterrestrial bioimportant sugars remains unclear. We analyzed sugars in 3 carbonaceous chondrites and show evidence of extraterrestrial ribose and other bioessential sugars in primitive meteorites. The 13C-enriched stable carbon isotope compositions (δ13C vs.VPDB) of the detected sugars show that the sugars are of extraterrestrial origin. We also conducted a laboratory simulation experiment of a potential sugar formation reaction in space. The compositions of pentoses in meteorites and the composition of the products of the laboratory simulation suggest that meteoritic sugars were formed by formose-like processes. The mineral compositions of these meteorites further suggest the formation of these sugars both before and after the accretion of their parent asteroids. Meteorites were carriers of prebiotic organic molecules to the early Earth; thus, the detection of extraterrestrial sugars in meteorites establishes the existence of natural geological routes to make and preserve them as well as raising the possibility that extraterrestrial sugars contributed to forming functional biopolymers like RNA on the early Earth or other primitive worlds.

2.
Earth Planets Space ; 73(1): 120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776735

RESUMO

Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars-moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn-53Cr and 87Rb-87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.

3.
Orig Life Evol Biosph ; 48(1): 131-139, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28484901

RESUMO

Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at ~0.8 km/s, both D- and L-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.


Assuntos
Calefação , Meteoroides , Valina/química , Carbonato de Cálcio/química , Evolução Química , Compostos Férricos/química , Compostos de Ferro/química , Compostos de Magnésio/química , Origem da Vida , Silicatos/química , Estereoisomerismo
4.
Orig Life Evol Biosph ; 47(2): 145-160, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27663449

RESUMO

The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization of less reactive amino acids during diagenesis and enhance the formation of peptides composed of multiple amino acids.


Assuntos
Metionina/química , Aminoácidos , Amônia , Bicarbonatos , Glicina , Polimerização , Água
5.
Beilstein J Org Chem ; 13: 393-404, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382177

RESUMO

The prebiotic significance of laboratory experiments that study the interactions between oligomeric RNA and mineral species is difficult to know. Natural exemplars of specific minerals can differ widely depending on their provenance. While laboratory-generated samples of synthetic minerals can have controlled compositions, they are often viewed as "unnatural". Here, we show how trends in the interaction of RNA with natural mineral specimens, synthetic mineral specimens, and co-precipitated pairs of synthetic minerals, can make a persuasive case that the observed interactions reflect the composition of the minerals themselves, rather than their being simply examples of large molecules associating nonspecifically with large surfaces. Using this approach, we have discovered Periodic Table trends in the binding of oligomeric RNA to alkaline earth carbonate minerals and alkaline earth sulfate minerals, where those trends are the same when measured in natural and synthetic minerals. They are also validated by comparison of co-precipitated synthetic minerals. We also show differential binding of RNA to polymorphic forms of calcium carbonate, and the stabilization of bound RNA on aragonite. These have relevance to the prebiotic stabilization of RNA, where such carbonate minerals are expected to have been abundant, as they appear to be today on Mars.

6.
Orig Life Evol Biosph ; 46(2-3): 189-202, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26559965

RESUMO

Ribose is an important constituent of RNA: ribose connects RNA bases and forms a strand of sugar phosphates. Accumulation of ribose on prebiotic Earth was difficult because of its low stability. Improvement in the yield of ribose by the introduction of borate or silicate in a formose-like reaction has been proposed. The effects of borates have been further analyzed and confirmed in subsequent studies. Nonetheless, the effects of silicates and phosphates remain unclear. In the present study, we incubated aldopentoses in a highly alkaline aqueous solution at a moderate temperature to determine the effects of silicate or phosphate on the degradation rates of ribose and its isomeric aldopentoses. The formation of a complex of silicate (or phosphate) with ribose was also analyzed in experiments with (29)Si and (31)P nuclear magnetic resonance (NMR). We found that silicate or phosphate complexes of ribose were not detectable under our experimental conditions. The stability of ribose and lyxose improved after addition of 40-fold molar excess (relative to a pentose) of sodium silicate or sodium phosphate to the alkaline solution. The stability was not improved further when an 80-fold molar excess of sodium silicate or sodium phosphate was added. Calcium was removed from these solutions by precipitation of calcium salts. The drop in Ca(2+) concentration might have improved the stability of ribose and lyxose, which are susceptible to aldol addition. The improvement of ribose stability by the removal of Ca(2+) and by addition of silicate or phosphate was far smaller than the improvement by borate. Furthermore, all aldopentoses showed similar stability in silicate- and phosphate-containing solutions. These results clearly show that selective stabilization of ribose by borate cannot be replaced by the effects of silicate or phosphate; this finding points to the importance of borate in prebiotic RNA formation.


Assuntos
Cálcio/química , Origem da Vida , Pentoses/química , Fosfatos/química , Ribose/química , Silicatos/química , Álcalis , Boratos/química , Carboidratos/química , Evolução Química , Concentração de Íons de Hidrogênio , Modelos Químicos , RNA/química , Água/química
7.
J Biol Phys ; 42(1): 177-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26369758

RESUMO

Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.


Assuntos
Alanina/química , Glicina/química , Meteoroides , Água do Mar/química , Aminas/química , Amônia/química , Benzeno/química , Cinética , Modelos Químicos , Oxigênio/química , Pressão , Temperatura
8.
Angew Chem Int Ed Engl ; 55(51): 15816-15820, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27862722

RESUMO

RNA is currently thought to have been the first biopolymer to support Darwinian natural selection on Earth. However, the phosphate esters in RNA and its precursors, and the many sites at which phosphorylation might occur in ribonucleosides under conditions that make it possible, challenge prebiotic chemists. Moreover, free inorganic phosphate may have been scarce on early Earth owing to its sequestration by calcium in the unreactive mineral hydroxyapatite. Herein, it is shown that these problems can be mitigated by a particular geological environment that contains borate, magnesium, sulfate, calcium, and phosphate in evaporite deposits. Actual geological environments, reproduced here, show that Mg2+ and borate sequester phosphate from calcium to form the mineral lüneburgite. Ribonucleosides stabilized by borate mobilize borate and phosphate from lüneburgite, and are then regiospecifically phosphorylated by the mineral. Thus, in addition to guiding carbohydrate pre-metabolism, borate minerals in evaporite geoorganic contexts offer a solution to the phosphate problem in the "RNA first" model for the origins of life.


Assuntos
Boratos/química , Minerais/química , Origem da Vida , Fosfatos/química , RNA/química , Ribonucleosídeos/química , Magnésio/química , Fosforilação , Estereoisomerismo
9.
Sci Rep ; 14(1): 264, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168787

RESUMO

Glycolysis and pentose phosphate pathways play essential roles in cellular processes and are assumed to be among the most ancient metabolic pathways. Non-enzymatic metabolism-like reactions might have occurred on the prebiotic Earth and been inherited by the biological reactions. Previous research has identified a part of the non-enzymatic glycolysis and the non-enzymatic pentose phosphate pathway from glucose 6-phosphate and 6-phosphogluconate, which are intermediates of these reactions. However, how these phosphorylated molecules were formed on the prebiotic Earth remains unclear. Herein, we demonstrate the synthesis of glucose and gluconate from simple aldehydes in alkaline solutions and the formation of glucose 6-phosphate and 6-phosphogluconate with borate using thermal evaporation. These results imply that the initial stages of glycolysis-like and pentose phosphate pathway-like reactions were achieved in borate-rich evaporative environments on prebiotic Earth, suggesting that non-enzymatic metabolism provided biomolecules and their precursors on prebiotic Earth.


Assuntos
Boratos , Via de Pentose Fosfato , Fosforilação , Glicólise , Hexoses , Glucose/metabolismo , Fosfatos
10.
Sci Rep ; 14(1): 2397, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336798

RESUMO

Formaldehyde (H2CO) is a critical precursor for the abiotic formation of biomolecules, including amino acids and sugars, which are the building blocks of proteins and RNA. Geomorphological and geochemical evidence on Mars indicates a temperate environment compatible with the existence of surface liquid water during its early history at 3.8-3.6 billion years ago (Ga), which was maintained by the warming effect of reducing gases, such as H2. However, it remains uncertain whether such a temperate and weakly reducing surface environment on early Mars was suitable for producing H2CO. In this study, we investigated the atmospheric production of H2CO on early Mars using a 1-D photochemical model assuming a thick CO2-dominated atmosphere with H2 and CO. Our results show that a continuous supply of atmospheric H2CO can be used to form various organic compounds, including amino acids and sugars. This could be a possible origin for the organic matter observed on the Martian surface. Given the previously reported conversion rate from H2CO into ribose, the calculated H2CO deposition flux suggests a continuous supply of bio-important sugars on early Mars, particularly during the Noachian and early Hesperian periods.

11.
Astrobiology ; 24(5): 489-497, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696654

RESUMO

Ribose is the defining sugar in ribonucleic acid (RNA), which is often proposed to have carried the genetic information and catalyzed the biological reactions of the first life on Earth. Thus, abiological processes that yield ribose under prebiotic conditions have been studied for decades. However, aqueous environments required for the formation of ribose from materials available in quantity under geologically reasonable models, where the ribose formed is not immediately destroyed, remain unclear. This is due in large part to the challenge of analysis of carbohydrates formed under a wide range of aqueous conditions. Thus, the formation of ribose on prebiotic Earth has sometimes been questioned. We investigated the quantitative effects of pH, temperature, cation, and the concentrations of formaldehyde and glycolaldehyde on the synthesis of diverse sugars, including ribose. The results suggest a range of conditions that produce ribose and that ribose could have formed in constrained aquifers on prebiotic Earth.


Assuntos
Formaldeído , Ribose , Temperatura , Água , Ribose/química , Concentração de Íons de Hidrogênio , Água/química , Formaldeído/química , Acetaldeído/química , Acetaldeído/análogos & derivados , Planeta Terra , Origem da Vida
12.
Urolithiasis ; 52(1): 57, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563829

RESUMO

Calcium oxalate kidney stones, the most prevalent type of kidney stones, undergo a multi-step process of crystal nucleation, growth, aggregation, and secondary transition. The secondary transition has been rather overlooked, and thus, the effects on the disease and the underlying mechanism remain unclear. Here, we show, by periodic micro-CT images of human kidney stones in an ex vivo incubation experiment, that the growth of porous aggregates of calcium oxalate dihydrate (COD) crystals triggers the hardening of the kidney stones that causes difficulty in lithotripsy of kidney stone disease in the secondary transition. This hardening was caused by the internal nucleation and growth of precise calcium oxalate monohydrate (COM) crystals from isolated urine in which the calcium oxalate concentrations decreased by the growth of COD in closed grain boundaries of COD aggregate kidney stones. Reducing the calcium oxalate concentrations in urine is regarded as a typical approach for avoiding the recurrence. However, our results revealed that the decrease of the concentrations in closed microenvironments conversely promotes the transition of the COD aggregates into hard COM aggregates. We anticipate that the suppression of the secondary transition has the potential to manage the deterioration of kidney stone disease.


Assuntos
Líquidos Corporais , Cálculos Renais , Litotripsia , Humanos , Oxalato de Cálcio , Dureza
13.
Biomed Res ; 45(3): 103-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839353

RESUMO

Kidney stone disease is a serious disease due to the severe pain it causes, high morbidity, and high recurrence rate. Notably, calcium oxalate stones are the most common type of kidney stone. Calcium oxalate appears in two forms in kidney stones: the stable phase, monohydrate (COM), and the metastable phase, dihydrate (COD). Particularly, COM stones with concentric structures are hard and difficult to treat. However, the factor determining the growth of either COM or COD crystals in the urine, which is supersaturated for both phases, remains unclear. This study shows that calcium phosphate ingredients preferentially induce COM crystal nucleation and growth, by observing and analyzing kidney stones containing both COM and COD crystals. The forms of calcium phosphate are not limited to Randall's plaques (1-2 mm size aggregates, which contain calcium phosphate nanoparticles and proteins, and form in the renal papilla). For example, aggregates of strip-shaped calcium phosphate crystals and fields of dispersed calcium phosphate microcrystals (nano to micrometer order) also promote the growth of concentric COM structures. This suggests that patients who excrete urine with a higher quantity of calcium phosphate crystals may be more prone to forming hard and troublesome COM stones.


Assuntos
Oxalato de Cálcio , Fosfatos de Cálcio , Cristalização , Cálculos Renais , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/química , Oxalato de Cálcio/química , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/urina , Cálculos Renais/química , Cálculos Renais/metabolismo , Humanos , Animais
14.
Orig Life Evol Biosph ; 43(4-5): 353-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24352855

RESUMO

In this study, borate was found to selectively increase the stability of ribose over other aldopentoses. Ribose is the only sugar present in both early RNA-based biochemistry and contemporary DNA-based life, and the stability of ribose is of fundamental concern for determining the origin of early RNA-based biochemistry. The formose reaction is a potential process in the prebiotic synthesis of ribose and its stereoisomers arabinose, xylose, and lyxose. Ribose is the least stable of these aldopentoses, raising the fundamental question of whether it was originally a component of primitive RNA or was selected through biotic processes. Borate is known to increase the stability of aldopentoses, but the specific differences in the stabilization achieved among different stereoisomers remain unclear. In this study, it was found that the stabilities of all of the tested pentoses increased with the concentration of added borate, but notably, the stability of ribose increased the most. The predominant formation of complexes between borate and ribose was verified, in agreement with previous studies. This borate complex formation might have sequestered ribose from the isomerization and decomposition reactions, resulting in its selective stabilization. These findings indicate that ribose could have accumulated in borate-rich environments on the early Earth and suggest that ribose-based nucleotides combined with phosphate and nucleobases formed abiotically.


Assuntos
Boratos/química , Evolução Química , Ribose/química , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Pentoses/química
15.
Commun Chem ; 6(1): 89, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169868

RESUMO

The emergence of proteins and their interactions with RNAs were a key step in the origin and early evolution of life. The abiotic synthesis of peptides has been limited in short amino acid length and is favored in highly alkaline evaporitic conditions in which RNAs are unstable. This environment is also inconsistent with estimated Hadean Earth. Prebiotic environments rich in boron are reportedly ideal for abiotic RNA synthesis. However, the effects of boron on amino acid polymerization are unclear. We report that boric acid enables the polymerization of amino acids at acidic and near-neutral pH levels based on simple heating experiments of amino acid solutions containing borate/boric acid at various pH levels. Our study provides evidence for the boron-assisted synthesis of polypeptides in prebiotically plausible environments, where the same conditions would allow for the formation of RNAs and interactions of primordial proteins and RNAs that could be inherited by RNA-dependent protein synthesis during the evolution of life.

16.
Sci Rep ; 13(1): 6683, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095091

RESUMO

Carbonaceous meteorites contain diverse soluble organic compounds. These compounds formed in the early solar system from volatiles accreted on tiny dust particles. However, the difference in the organic synthesis on respective dust particles in the early solar system remains unclear. We found micrometer-scale heterogeneous distributions of diverse CHN1-2 and CHN1-2O compounds in two primitive meteorites: the Murchison and NWA 801, using a surface-assisted laser desorption/ionization system connected to a high mass resolution mass spectrometer. These compounds contained mutual relationships of ± H2, ± CH2, ± H2O, and ± CH2O and showed highly similar distributions, indicating that they are the products of series reactions. The heterogeneity was caused by the micro-scale difference in the abundance of these compounds and the extent of the series reactions, indicating that these compounds formed on respective dust particles before asteroid accretion. The results of the present study provide evidence of heterogeneous volatile compositions and the extent of organic reactions among the dust particles that formed carbonaceous asteroids. The compositions of diverse small organic compounds associated with respective dust particles in meteorites are useful to understand different histories of volatile evolution in the early solar system.

17.
PLoS One ; 18(3): e0282743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893192

RESUMO

We sought to identify and quantitatively analyze calcium oxalate (CaOx) kidney stones on the order of micrometers, with a focus on the quantitative identification of calcium oxalate monohydrate (COM) and dihydrate (COD). We performed Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), and microfocus X-ray computed tomography measurements (microfocus X-ray CT) and compared their results. An extended analysis of the FTIR spectrum focusing on the 780 cm-1 peak made it possible to achieve a reliable analysis of the COM/COD ratio. We succeeded in the quantitative analysis of COM/COD in 50-µm2 areas by applying microscopic FTIR for thin sections of kidney stones, and by applying microfocus X-ray CT system for bulk samples. The analysis results based on the PXRD measurements with micro-sampling, the microscopic FTIR analysis of thin sections, and the microfocus X-ray CT system observation of a bulk kidney stone sample showed roughly consistent results, indicating that all three methods can be used complementarily. This quantitative analysis method evaluates the detailed CaOx composition on the preserved stone surface and provides information on the stone formation processes. This information clarifies where and which crystal phase nucleates, how the crystals grow, and how the transition from the metastable phase to the stable phase proceeds. The phase transition affects the growth rate and hardness of kidney stones and thus provides crucial clues to the kidney stone formation process.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Humanos , Oxalato de Cálcio/química , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tomografia Computadorizada por Raios X , Raios X
18.
Science ; 379(6634): eabn9033, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821691

RESUMO

The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu's parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.

19.
Sci Adv ; 9(49): eadi3789, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055820

RESUMO

The carbonaceous asteroid Ryugu has been explored by the Hayabusa2 spacecraft to elucidate the actual nature of hydrous asteroids. Laboratory analyses revealed that the samples from Ryugu are comparable to unheated CI carbonaceous chondrites; however, reflectance spectra of Ryugu samples and CIs do not coincide. Here, we demonstrate that Ryugu sample spectra are reproduced by heating Orgueil CI chondrite at 300°C under reducing conditions, which caused dehydration of terrestrial weathering products and reduction of iron in phyllosilicates. Terrestrial weathering of CIs accounts for the spectral differences between Ryugu sample and CIs, which is more severe than space weathering that likely explains those between asteroid Ryugu and the collected samples. Previous assignments of CI chondrite parent bodies, i.e., chemically most primitive objects in the solar system, are based on the spectra of CI chondrites. This study indicates that actual spectra of CI parent bodies are much darker and flatter at ultraviolet to visible wavelengths than the spectra of CI chondrites.

20.
Orig Life Evol Biosph ; 42(6): 519-31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22915229

RESUMO

We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, ß-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.


Assuntos
Sedimentos Geológicos/química , Peptídeos/química , Polimerização , Valina/química , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Pressão , Espectrometria de Massas em Tandem , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA