Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(17): 3969-3986, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34042229

RESUMO

Microplastic (plastic particles measuring <5mm) pollution is ubiquitous. Unlike in other well-studied ecosystems, for example, marine and freshwater environments, microplastics in terrestrial systems are relatively understudied. Their potential impacts on terrestrial environments, in particular the risk of causing ecological surprise, must be better understood and quantified. Ecological surprise occurs when ecosystem behavior deviates radically from expectations and generally has negative consequences for ecosystem services. The properties and behavior of microplastics within terrestrial environments may increase their likelihood of causing ecological surprises as they (a) are highly persistent global pollutants that will last for centuries, (b) can interact with the abiotic environment in a complex manner, (c) can impact terrestrial organisms directly or indirectly and (d) interact with other contaminants and can facilitate their transport. Here, we compiled findings of previous research on microplastics in terrestrial environments. We systematically focused on studies addressing different facets of microplastics related to their distribution, dispersion, impact on soil characteristics and functions, levels of biological organization of tested terrestrial biota (single species vs. assemblages), scale of experimental study and corresponding ecotoxicological effects. Our systematic assessment of previous microplastic research revealed that most studies have been conducted on single species under laboratory conditions with short-term exposures; few studies were conducted under more realistic long-term field conditions and/or with multi-species assemblages. Studies targeting multi-species assemblages primarily considered soil bacterial communities and showed that microplastics can alter essential nutrient cycling functions. More ecologically meaningful studies of terrestrial microplastics encompassing multi-species assemblages, critical ecological processes (e.g., biogeochemical cycles and pollination) and interactions with other anthropogenic stressors must be conducted. Addressing these knowledge gaps will provide a better understanding of microplastics as emerging global stressors and should lower the risk of ecological surprise in terrestrial ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Plásticos , Poluentes Químicos da Água/análise
2.
Glob Chang Biol ; 26(3): 1259-1270, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31808987

RESUMO

Research on ecosystem stability has had a strong focus on local systems. However, environmental change often occurs slowly at broad spatial scales, which requires regional-level assessments of long-term stability. In this study, we assess the stability of macroinvertebrate communities across 105 lakes in the Swedish "lakescape." Using a hierarchical mixed-model approach, we first evaluate the environmental pressures affecting invertebrate communities in two ecoregions (north, south) using a 23 year time series (1995-2017) and then examine how a set of environmental and physical variables affect the stability of these communities. Results show that lake latitude, size, total phosphorus and alkalinity affect community composition in northern and southern lakes. We find that lake stability is affected by species richness and lake size in both ecoregions and alkalinity and total phosphorus in northern lakes. There is large heterogeneity in the patterns of community stability of individual lakes, but relationships between that stability and environmental drivers begin to emerge when the lakescape, composed of many discrete lakes, is the focal unit of study. The results of this study highlight that broad-scale comparisons in combination with long time series are essential to understand the effects of environmental change on the stability of lake communities in space and time.


Assuntos
Ecossistema , Lagos , Animais , Invertebrados , Fósforo , Suécia
3.
Environ Monit Assess ; 190(9): 558, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30159677

RESUMO

Long-term water quality monitoring is of high value for environmental management as well as for research. Artificial level shifts in time series due to method improvements, flaws in laboratory practices or changes in laboratory are a common limitation for analysis, which, however, are often ignored. Statistical estimation of such artefacts is complicated by the simultaneous existence of trends, seasonal variation and effects of other influencing factors, such as weather conditions. Here, we investigate the performance of generalised additive mixed models (GAMM) to simultaneously identify one or more artefacts associated with artificial level shifts, longitudinal effects related to temporal trends and seasonal variation, as well as to model the serial correlation structure of the data. In the same model, it is possible to estimate separate residual variances for different periods so as to identify if artefacts not only influence the mean level but also the dispersion of a series. Even with an appropriate statistical methodology, it is difficult to quantify artificial level shifts and make appropriate adjustments to the time series. The underlying temporal structure of the series is especially important. As long as there is no prominent underlying trend in the series, the shift estimates are rather stable and show less variation. If an artificial shift occurs during a slower downward or upward tendency, it is difficult to separate these two effects and shift estimates can be both biased and have large variation. In the case of a change in method or laboratory, we show that conducting the analyses with both methods in parallel strongly improves estimates of artefact effects on the time series, even if certain problems remain. Due to the difficulties of estimating artificial level shifts, posterior adjustment is problematic and can lead to time series that no longer can be used for trend analysis or other analysis based on the longitudinal structure of the series. Before carrying out a change in analytic method or laboratory, it should be considered if this is absolutely necessary. If changes cannot be avoided, the analysis of the two methods considered, or the two laboratories contracted, should be run in parallel for a considerable period of time so as to enable a good assessment of changes introduced to the data series.


Assuntos
Artefatos , Monitoramento Ambiental/métodos , Modelos Estatísticos , Poluição da Água/análise , Qualidade da Água , Clima , Humanos , Análise de Regressão , Estações do Ano , Fatores de Tempo
5.
Environ Sci Technol ; 50(14): 7416-24, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27336735

RESUMO

Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and hexachlorobenzene (HCB) in streamwater were measured in a remote catchment in northern Sweden and downstream to the Baltic Sea. Sampling took place at seven sites during two years and under different hydrological conditions: during the snow-free, snow-covered, and spring-flood seasons. Concentrations varied substantially between seasons and were up to 20 times higher during the spring flood compared to the preceding snow-covered period. The increase in concentrations with runoff was due to higher levels of particle-associated contaminants, while the dissolved concentrations remained stable. Particulate-contaminant concentrations were positively correlated primarily to suspended particulate matter (SPM) at sites in areas with a high land-cover fraction of sorted sediment. When upstream sampling locations were compared, a mire-dominated stream had higher concentrations and a lower retention of atmospherically deposited contaminants than a forest stream of the same catchment size. Contaminant concentrations (normalized to volume) did not increase consistently downstream despite the presence of several point sources. However, when normalized to the amount of SPM, concentrations were on average >20 times higher at the outlet in the Baltic Sea compared to the outlet from the remote catchment without point sources.


Assuntos
Monitoramento Ambiental , Bifenilos Policlorados , Hexaclorobenzeno , Hidrologia , Estações do Ano
6.
Environ Sci Technol ; 49(1): 386-94, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25485992

RESUMO

Quantifying human impacts on the natural environment requires credible reconstructions of reference conditions. Anthropogenic acidification of surface waters is strongly influenced by total organic carbon (TOC) concentrations. Because both the degree of acidification and recovery are dependent on historical TOC concentrations, simple models to estimate changes in surface water TOC between reference conditions (1860) and the present day (2012) are needed. We used visible near infrared spectroscopy (VNIRS) of lake sediments to reconstruct reference condition TOC and long-term monitoring data to predict recent changes. Two empirical models were developed to predict: (i) historical TOC trends between reference conditions (1860) and peak acidification (1980) and (ii) trends in TOC between 1988 and 2012. The models were statistically robust with adj. R(2) of (i) 0.85 and (ii) 0.71, respectively. Models were driven by lake and catchment area, wetlands, historical sulfur deposition and water chemistry. Present day TOC concentrations are similar to VNIRS-reconstructed and modeled reference condition TOC in Swedish lakes. The results are valuable for understanding drivers of TOC changes in lakes and for more credible assessments of reference conditions needed for water management in Europe and elsewhere.


Assuntos
Lagos/química , Modelos Teóricos , Compostos Orgânicos/química , Carbono/análise , Meio Ambiente , Europa (Continente) , Enxofre , Suécia , Água/química
7.
Environ Sci Technol ; 49(13): 7851-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25970167

RESUMO

The complexity of mercury (Hg) biogeochemistry has made it difficult to model surface water concentrations of both total Hg (THg) and especially methylmercury (MeHg), the species of Hg having the highest potential for bioaccumulation. To simulate THg and MeHg variation in low-order streams, we have adapted a conceptual modeling framework where a continuum of lateral flows through riparian soils determines streamflow concentrations. The model was applied to seven forest catchments located in two boreal regions in Sweden spanning a range of climatic, soil, and forest management conditions. Discharge, and simulated riparian soil water concentrations profiles, represented by two calibrated parameters, were able to explain much of the variability of THg and MeHg concentrations in the streams issuing from the catchments (Nash Sutcliffe (NS) up to 0.54 for THg and 0.58 for MeHg). Model performance for all catchments was improved (NS up to 0.76 for THg and 0.85 for MeHg) by adding two to four parameters to represent seasonality in riparian soil water THg and MeHg concentrations profiles. These results are consistent with the hypothesis that riparian flow-pathways and seasonality in riparian soil concentrations are the major controls on temporal variation of THg and MeHg concentrations in low-order streams.


Assuntos
Mercúrio/análise , Compostos de Metilmercúrio/análise , Modelos Teóricos , Rios/química , Estações do Ano , Solo/química , Suécia , Fatores de Tempo , Poluentes Químicos da Água/análise
8.
Glob Chang Biol ; 20(4): 1225-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501106

RESUMO

Here, we use a unique long-term data set on total organic carbon (TOC) fluxes, its climatic drivers and effects of land management from a large boreal watershed in northern Finland. TOC and runoff have been monitored at several sites in the Simojoki watershed (3160 km(2) ) since the early 1960s. Annual TOC fluxes have increased significantly together with increased inter-annual variability. Acid deposition in the area has been low and has not significantly influenced losses of TOC. Forest management, including ditching and clear felling, had a minor influence on TOC fluxes - seasonal and long-term patterns in TOC were controlled primarily by changes in soil frost, seasonal precipitation, drought, and runoff. Deeper soil frost led to lower spring TOC concentrations in the river. Summer TOC concentrations were positively correlated with precipitation and soil moisture not temperature. There is some indication that drought conditions led to elevated TOC concentrations and fluxes in subsequent years (1998-2000). A sensitivity analysis of the INCA-C model results showed the importance of landscape position, land-use type, and soil temperature as controls of modeled TOC concentrations. Model predictions were not sensitive to forest management. Our results are contradictory to some earlier plot-scale and small catchment studies that have shown more profound forest management impacts on TOC fluxes. This shows the importance of scale when assessing the mechanisms controlling TOC fluxes and concentrations. The results highlight the value of long-term multiple data sets to better understand ecosystem response to land management, climate change and extremes in northern ecosystems.


Assuntos
Ciclo do Carbono , Monitoramento Ambiental , Agricultura Florestal , Modelos Teóricos , Calibragem , Carbono/análise , Clima , Secas , Finlândia , Inundações , Estações do Ano , Temperatura
9.
Glob Chang Biol ; 20(9): 2752-64, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24535943

RESUMO

Quantifying the effects of human activity on the natural environment is dependent on credible estimates of reference conditions to define the state of the environment before the onset of adverse human impacts. In Europe, emission controls that aimed at restoring ecological status were based on hindcasts from process-based models or paleolimnological reconstructions. For instance, 1860 is used in Europe as the target for restoration from acidification concerning biological and chemical parameters. A more practical problem is that the historical states of ecosystems and their function cannot be observed directly. Therefore, we (i) compare estimates of acidification based on long-term observations of roach (Rutilus rutilus) populations with hindcast pH from the hydrogeochemical model MAGIC; (ii) discuss policy implications and possible scope for use of long-term archival data for assessing human impacts on the natural environment and (iii) present a novel conceptual model for interpreting the importance of physico-chemical and ecological deviations from reference conditions. Of the 85 lakes studied, 78 were coherently classified by both methods. In 1980, 28 lakes were classified as acidified with the MAGIC model, however, roach was present in 14 of these. In 2010, MAGIC predicted chemical recovery in 50% of the lakes, however roach only recolonized in five lakes after 1990, showing a lag between chemical and biological recovery. Our study is the first study of its kind to use long-term archival biological data in concert with hydrogeochemical modeling for regional assessments of anthropogenic acidification. Based on our results, we show how the conceptual model can be used to understand and prioritize management of physico-chemical and ecological effects of anthropogenic stressors on surface water quality.


Assuntos
Distribuição Animal/fisiologia , Cyprinidae/fisiologia , Poluição Ambiental/efeitos adversos , Lagos/química , Modelos Químicos , Alumínio/análise , Animais , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Dinâmica Populacional , Especificidade da Espécie , Suécia
10.
Ambio ; 43 Suppl 1: 3-18, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25403966

RESUMO

For more than 50 years, scientific insights from surface water monitoring have supported Swedish evidence-based environmental management. Efforts to understand and control eutrophication in the 1960s led to construction of wastewater treatment plants with phosphorus retention, while acid rain research in the 1970s contributed to international legislation curbing emissions. By the 1990s, long-time series were being used to infer climate effects on surface water chemistry and biology. Monitoring data play a key role in implementing the EU Water Framework Directive and other legislation and have been used to show beneficial effects of agricultural management on Baltic Sea eutrophication. The Swedish experience demonstrates that well-designed and financially supported surface water monitoring can be used to understand and manage a range of stressors and societal concerns. Using scientifically sound adaptive monitoring principles to balance continuity and change has ensured long-time series and the capability to address new questions over time.


Assuntos
Monitoramento Ambiental/história , Água Doce/análise , Monitoramento Ambiental/legislação & jurisprudência , Política Ambiental/legislação & jurisprudência , União Europeia , Eutrofização , História do Século XX , História do Século XXI , Concentração de Íons de Hidrogênio , Suécia
11.
Ambio ; 43 Suppl 1: 30-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25403968

RESUMO

The recent browning (increase in color) of surface waters across much of the northern hemisphere has important implications for light climate, ecosystem functioning, and drinking water treatability. Using log-linear regressions and long-term (6-21 years) data from 112 Swedish watercourses, we identified temporal and spatial patterns in browning-related parameters [iron, absorbance, and total organic carbon (TOC)]. Flow variability and lakes in the catchment were major influences on all parameters. Co-variation between seasonal, discharge-related, and trend effects on iron, TOC, and absorbance were dependent on pH, landscape position, catchment size, latitude, and dominant land cover. Large agriculture-dominated catchments had significantly larger trends in iron, TOC, and water color than small forest catchments. Our results suggest that while similarities exist, no single mechanism can explain the observed browning but show that multiple mechanisms related to land cover, climate, and acidification history are responsible for the ongoing browning of surface waters.


Assuntos
Carbono/análise , Ferro/análise , Lagos/análise , Rios/química , Cor , Monitorização de Parâmetros Ecológicos , Dinâmica não Linear , Análise de Regressão , Estações do Ano , Suécia
12.
Ambio ; 43 Suppl 1: 77-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25403971

RESUMO

Long-term (1987-2012) water quality monitoring in 36 acid-sensitive Swedish lakes shows slow recovery from historic acidification. Overall, strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many acid-sensitive lakes. Base cation concentrations have declined less rapidly than strong acid anion concentrations, leading to an increase in charge balance acid neutralizing capacity. In many lakes, modeled organic acidity is now approximately equal to inorganic acidity. The observed trends in water chemistry suggest lakes may not return to reference conditions. Despite declines in acid deposition, many of these lakes are still acidified. Base cation concentrations continue to decline and alkalinity shows only small increases. A changing climate may further delay recovery by increasing dissolved organic carbon concentrations and sea-salt episodes. More intensive forest harvesting may also hamper recovery by reducing the supply of soil base cations.


Assuntos
Lagos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Estações do Ano , Suécia
13.
Ambio ; 43(2): 244-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23420472

RESUMO

The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity.


Assuntos
Agricultura Florestal , Qualidade da Água , Finlândia , Países Escandinavos e Nórdicos , Ciclo Hidrológico
14.
Ambio ; 52(11): 1834-1846, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37733219

RESUMO

The browning of surface waters due to the increased terrestrial loading of dissolved organic carbon is observed across the northern hemisphere. Brownification is often explained by changes in large-scale anthropogenic pressures (including acidification, and climate and land-use changes). We quantified the effect of environmental changes on the brownification of an important lake for birds, Kukkia in southern Finland. We studied the past trends of organic carbon loading from catchments based on observations taken since the 1990s. We created hindcasting scenarios for deposition, climate and land-use change in order to simulate their quantitative effect on brownification by using process-based models. Changes in forest cuttings were shown to be the primary reason for the brownification. According to the simulations, a decrease in deposition has resulted in a slightly lower leaching of total organic carbon (TOC). In addition, runoff and TOC leaching from terrestrial areas to the lake was smaller than it would have been without the observed increasing trend in temperature by 2 °C in 25 years.

15.
Ambio ; 52(11): 1819-1831, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725249

RESUMO

Integrated long-term, in-situ observations are needed to document ongoing environmental change, to "ground-truth" remote sensing and model outputs and to predict future Earth system behaviour. The scientific and societal value of in-situ observations increases with site representativeness, temporal duration, number of parameters measured and comparability within and across sites. Research Infrastructures (RIs) can support harmonised, cross-site data collection, curation and publication. Integrating RI networks through site co-location and standardised observation methods can help answers three questions about the terrestrial carbon sink: (i) What are present and future carbon sequestration rates in northern European forests? (ii) How are these rates controlled? (iii) Why do the observed patterns exist? Here, we present a conceptual model for RI co-location and highlight potential insights into the terrestrial carbon sink achievable when long-term in-situ Earth observation sites participate in multiple RI networks (e.g., ICOS and eLTER). Finally, we offer recommendations to promote RI co-location.

16.
J Environ Monit ; 14(10): 2643-52, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22885538

RESUMO

Ultraviolet/visible (UV/Vis) absorbance spectroscopy is a commonly used technique for characterizing dissolved organic matter (DOM). We present an analysis of UV/Vis absorbance spectra from 983 lakes throughout Sweden, sampled during autumn 2009. Metrics included both specific absorbances (i.e. absorbance per mass unit of organic carbon), and descriptions of spectral shape. Overall, we found three factors to which all spectral metrics were similarly related: acidity, retention-time, and latitude. In general, alkaline lakes with a long retention time in northern Sweden have lower specific absorbance and steeper spectral slope than acidic lakes with a short retention time in southern Sweden. Relative to the specific absorbance measured at 254 nm (SUVA), commonly used as a measure of DOM aromaticity, the specific absorbance at longer wavelengths and metrics of spectral shape were more sensitive to acidity and less sensitive to latitude. Although different spectral metrics are hypothesized to reflect different properties of DOM, UV/Vis absorbance spectroscopy may not be useful for more refined characterization of organic matter because of the strong inter-correlation between metrics. Nevertheless, it remains useful as a quick, cheap and reliable method of estimating DOM quantity and describing quality. We suggest that the most informative range to measure absorbance is between approximately 250 and 360 nm, where the between-lake variability is largest and absorbance can, in general, be precisely measured.


Assuntos
Lagos/química , Raios Ultravioleta , Absorção , Monitoramento Ambiental , Espectrofotometria Ultravioleta , Suécia , Poluição Química da Água/análise , Poluição Química da Água/estatística & dados numéricos
17.
Sci Total Environ ; 839: 156230, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643144

RESUMO

Marine eutrophication is a pervasive and growing threat to global sustainability. Macroalgal cultivation is a promising circular economy solution to achieve nutrient reduction and food security. However, the location of production hotspots is not well known. In this paper the production potential of macroalgae of high commercial value was predicted across the Baltic Sea region. In addition, the nutrient limitation within and adjacent to macroalgal farms was investigated to suggest optimal site-specific configuration of farms. The production potential of Saccharina latissima was largely driven by salinity and the highest production yields are expected in the westernmost Baltic Sea areas where salinity is >23. The direct and interactive effects of light availability, temperature, salinity and nutrient concentrations regulated the predicted changes in the production of Ulva intestinalis and Fucus vesiculosus. The western and southern Baltic Sea exhibited the highest farming potential for these species, with promising areas also in the eastern Baltic Sea. Macroalgal farming did not induce significant nutrient limitation. The expected spatial propagation of nutrient limitation caused by macroalgal farming was less than 100-250 m. Higher propagation distances were found in areas of low nutrient and low water exchange (e.g. offshore areas in the Baltic Proper) and smaller distances in areas of high nutrient and high water exchange (e.g. western Baltic Sea and Gulf of Riga). The generated maps provide the most sought-after input to support blue growth initiatives that foster the sustainable development of macroalgal cultivation and reduction of in situ nutrient loads in the Baltic Sea.


Assuntos
Fucus , Alga Marinha , Países Bálticos , Eutrofização , Nutrientes , Oceanos e Mares , Água
18.
Environ Sci Technol ; 50(20): 10777-10779, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27682621
20.
Ambio ; 40(8): 920-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22201006

RESUMO

Short-term variability in stream water dissolved organic carbon (DOC) concentrations is controlled by hydrology, climate and atmospheric deposition. Using the Riparian flow-concentration Integration Model (RIM), we evaluated factors controlling stream water DOC in the Swedish Integrated Monitoring (IM) catchments by separating out hydrological effects on stream DOC dynamics. Model residuals were correlated with climate and deposition-related drivers. DOC was most strongly correlated to water flow in the northern catchment (Gammtratten). The southern Aneboda and Kindla catchments had pronounced seasonal DOC signals, which correlated weakly to flow. DOC concentrations at Gårdsjön increased, potentially in response to declining acid deposition. Soil temperature correlated strongly with model residuals at all sites. Incorporating soil temperature in RIM improved model performance substantially (20-62% lower median absolute error). According to the simulations, the RIM conceptualization of riparian processes explains between 36% (Kindla) and 61% (Aneboda) of the DOC dynamics at the IM sites.


Assuntos
Carbono/análise , Monitoramento Ambiental , Água Doce/análise , Compostos Orgânicos/análise , Modelos Teóricos , Suécia , Temperatura , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA