Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731544

RESUMO

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Assuntos
Antioxidantes , Berberis , Casca de Planta , Extratos Vegetais , Berberis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Casca de Planta/química , Humanos , Linhagem Celular Tumoral , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Sobrevivência Celular/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/química , Cromatografia Líquida de Alta Pressão , Caules de Planta/química
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511428

RESUMO

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.


Assuntos
Lamiaceae , Rosmarinus , Thymus (Planta) , Humanos , Antioxidantes/química , Thymus (Planta)/química , Rosmarinus/química , Lamiaceae/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Polifenóis/química , Fatores de Transcrição de Zíper de Leucina Básica
3.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175078

RESUMO

Chronic venous disease is one of the most common vascular diseases; the signs and symptoms are varied and are often neglected in the early stages. Vascular damage is based on proinflammatory, prothrombotic, prooxidant activity and increased expression of several matrix metalloproteinases (MMPs). The aim of this research is preparation and preliminary characterization of three vegetal extracts (Sophorae flos-SE, Ginkgo bilobae folium-GE and Calendulae flos-CE). The obtained dry extracts were subjected to phytochemical screening (FT-ICR-MS, UHPLC-HRMS/MS) and quantitative analysis (UHPLC-HRMS/MS, spectrophotometric methods). Antioxidant activity was evaluated using three methods: FRAP, DPPH and ABTS. More than 30 compounds were found in each extract. The amount of flavones follows the succession: SE > GE > CE; the amount of phenolcarboxylic acids follows: SE > CE > GE; and the amount of polyphenols follows: SE > GE > CE. Results for FRAP method varied as follows: SE > CE > GE; results for the DPPH method followed: SE > GE > CE; and results for ABTS followed: SE > GE > CE. Strong and very strong correlations (appreciated by Pearson coefficient) have been observed between antioxidant activity and the chemical content of extracts. Molecular docking studies revealed the potential of several identified phytochemicals to inhibit the activity of four MMP isoforms. In conclusion, these three extracts have potential in the treatment of chronic venous disease, based on their phytochemical composition.


Assuntos
Antioxidantes , Doenças Vasculares , Humanos , Antioxidantes/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/química
4.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499160

RESUMO

Oxidative stress is associated with aging, cancers, and numerous metabolic and chronic disorders, and phenolic compounds are well known for their health-promoting role due to their free-radical scavenging activity. These phytochemicals could also exhibit pro-oxidant effects. Due to its bioactive phenolic secondary metabolites, Usnea barbata (L.) Weber ex. F.H. Wigg (U. barbata) displays anticancer and antioxidant activities and has been used as a phytomedicine for thousands of years. The present work aims to analyze the properties of U. barbata extract in canola oil (UBO). The UBO cytotoxicity on oral squamous cell carcinoma (OSCC) CLS-354 cell line and blood cell cultures was explored through complex flow cytometry analyses regarding apoptosis, reactive oxygen species (ROS) levels, the enzymatic activity of caspase 3/7, cell cycle, nuclear shrinkage (NS), autophagy (A), and synthesis of deoxyribonucleic acid (DNA). All these studies were concomitantly performed on canola oil (CNO) to evidence the interaction of lichen metabolites with the constituents of this green solvent used for extraction. The obtained data evidenced that UBO inhibited CLS-354 oral cancer cell proliferation through ROS generation (316.67 × 104), determining higher levels of nuclear shrinkage (40.12%), cell cycle arrest in G0/G1 (92.51%; G0 is the differentiation phase, while during G1 phase occurs preparation for cell division), DNA fragmentation (2.97%), and autophagy (62.98%) than in blood cells. At a substantially higher ROS level in blood cells (5250.00 × 104), the processes that lead to cell death-NS (30.05%), cell cycle arrest in G0/G1 (86.30%), DNA fragmentation (0.72%), and autophagy (39.37%)-are considerably lower than in CLS-354 oral cancer cells. Our work reveals the ROS-mediated anticancer potential of UBO through DNA damage and autophagy. Moreover, the present study suggests that UBO pharmacological potential could result from the synergism between lichen secondary metabolites and canola oil phytoconstituents.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Usnea , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Usnea/química , Usnea/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Óleo de Brassica napus/farmacologia , Autofagia , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Extratos Vegetais/farmacologia , Fenóis/farmacologia , DNA/farmacologia , Linhagem Celular Tumoral
5.
Molecules ; 25(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429231

RESUMO

Identification and quantification of polyphenols in plant material are of great interest since they make a significant contribution to its total bioactivity. In the present study, an UPLC-Orbitrap-MS/MS approach using the variable data acquisition mode (vDIA) was developed and applied for rapid separation, identification, and quantification of the main polyphenolic compounds in Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages. Based on accurate MS data and fragment ions identification strategy, a total of 29 compounds were identified by comparing their accurate masses, fragment ions, retention times, and literatures. Additionally, a number of 30 compounds were quantified by comparing to the reference standards. Data were statistically analysed. For both plant species, the sprouts of the third germination day are valuable sources of bioactive compounds and could be used in phytotherapy and nutrition. Although Trifolium pratense L. (Red Clover) is considered to be a reference for natural remedies in relieving menopause disorders, alfalfa also showed a high level of biological active compounds with estrogenic activity.


Assuntos
Flavonoides/química , Medicago sativa/química , Polifenóis/química , Plântula/química , Trifolium/química , Cromatografia Líquida de Alta Pressão , Flavonoides/classificação , Flavonoides/isolamento & purificação , Germinação/fisiologia , Limite de Detecção , Espectrometria de Massas , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Extratos Vegetais/química , Polifenóis/classificação , Polifenóis/isolamento & purificação , Padrões de Referência , Plântula/metabolismo , Fatores de Tempo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
6.
Antibiotics (Basel) ; 13(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927145

RESUMO

The present study aims to evaluate the antibacterial activity of five commercially available essential oils (EOs), Lavender (LEO), Clove (CEO), Oregano (OEO), Eucalyptus (EEO), and Peppermint (PEO), against the most-known MDR Gram-positive and Gram-negative bacteria-Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853)-alone and in various combinations. Gas Chromatography-Mass Spectrometry (GC-MS) analysis established their complex compositions. Then, their antibacterial activity-expressed as the inhibition zone diameter (IZD) value (mm)-was investigated in vitro by the diffusimetric antibiogram method, using sterile cellulose discs with Ø 6 mm impregnated with 10 µL of sample and sterile borosilicate glass cylinders loaded with 100 µL; the minimum inhibitory concentration (MIC) value (µg/mL) for each EO was calculated from the IZD values (mm) measured after 24 h. The following EO combinations were evaluated: OEO+CEO, CEO+EEO, CEO+PEO, LEO+EEO, and EEO+PEO. Then, the influence of each dual combination on the activity of three conventional antibacterial drugs-Neomycin (NEO), Tetracycline (TET), and Bacitracin (BAC)-was investigated. The most active EOs against S. aureus and E. coli were LEO and OEO (IZD = 40 mm). They were followed by CEO and EEO (IZD = 20-27 mm); PEO exhibited the lowest antibacterial activity (IZD = 15-20 mm). EEO alone showed the highest inhibitory activity on P. aeruginosa (IZD = 25-35 mm). It was followed by CEO, LEO, and EEO (IZD = 7-11 mm), while PEO proved no antibacterial action against it (IZD = 0 mm). Only one synergic action was recorded (OEO+CEO against P. aeruginosa); EEO+PEO revealed partial synergism against S. aureus and CEO+PEO showed additive behavior against E. coli. Two triple associations with TET showed partial synergism against E. coli, and the other two (with NEO and TET) evidenced the same behavior against S. aureus; all contained EEO+PEO or CEO+PEO. Most combinations reported indifference. However, numerous cases involved antagonism between the constituents included in the double and triple combinations, and the EOs with the strongest antibacterial activities belonged to the highest antagonistic combinations. A consistent statistical analysis supported our results, showing that the EOs with moderate antibacterial activities could generate combinations with higher inhibitory effects based on synergistic or additive interactions.

7.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794552

RESUMO

Nanotechnology is one of the newest directions for plant-based therapies. Chronic venous disease often predisposes to long-term and invasive treatment. This research focused on the inclusion of vegetal extracts from Sophorae flos (SE), Calendulae flos (CE), and Ginkgo bilobae folium (GE) in formulations with PHB and PLGA polymers and their physicochemical characterization as a preliminary stage for possible use in the development of a complex therapeutic product. The samples were prepared by an oil-water emulsification and solvent evaporation technique, resulting in suspensions with high spreadability and a pH of 5.5. ATR-FTIR analysis revealed bands for stretching vibrations (O-H, C=O, and C-H in symmetric and asymmetric methyl and methylene) in the same regions as the base components, but switched to high or low wavenumbers and absorbance, highlighting the formation of adducts/complexes between the extracts and polymers. The obtained formulations were in the amorphous phase, as confirmed by XRD analysis. AFM analysis emphasized the morphological peculiarities of the extract-polymer nanoformulations. It could be noticed that, in the case of SE-based formulations, the dominant characteristics for SE-PHB and SE-PLGA composition were the formation of random large (SE-PHB) and smaller uniform (SE-PLGA) particles; further on, these particles tended to aggregate in the case of SE-PHB-PLGA. For the CE- and GE-based formulations, the dominant surface morphology was their porosity, generally with small pores, but larger cavities were observed in some cases (CE- and GE-PHB). The highest roughness values at the (8 µm × 8 µm) scale were found for the following samples and succession: CE-PHB < SE-PLGA < SE-PHB-PLGA. In addition, by thermogravimetric analysis, impregnation in the matrix of compression stockings was evaluated, which varied in the following order: CE-polymer > SE-polymer > GE-polymer. In conclusion, nine vegetal extract-polymer nanoformulations were prepared and preliminarily characterized (by advanced physicochemical methods) as a starting point for further optimization, stability studies, and possible use in complex pharmaceutical products.

8.
Pharmaceuticals (Basel) ; 17(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38931355

RESUMO

For developing novel photosensitizers with therapeutic potential in non-malignant and malignant cutaneous disorders, the unsymmetrical porphyrin, 5-(2-hydroxy-3-methoxyphenyl)-10, 15, 20-tris-(4-carboxymethylphenyl) porphyrin, was evaluated in silico and in vitro. The cellular uptake of the investigated porphyrin and its ability to perform photodynamic therapy were investigated in terms of the viability, proliferation, and necrosis of human HaCaT keratinocytes and human Hs27 skin fibroblasts, in correlation with the predictions regarding diffusion through cell membranes, ADMET profile (absorption, distribution, metabolism, elimination, toxicity), and potential pharmacological mechanism. Molecular docking and 250 ns molecular dynamics simulations revealed that P5.2 has the potential to form a relatively stable complex with the carbonic anhydrase IX catalytic site, the lowest predicted free energy of binding (MM/PBSA) being -39.097 kcal/mol. The results of the in vitro study showed that P5.2 is incorporated within 24 h in the investigated cells, especially in HaCaT keratinocytes, indicating its photosensitizing ability. Nevertheless, P5.2 does not exert significant cytotoxicity in "dark" conditions. In turn, PDT induced a decrease in the number of metabolically active HaCaT keratinocytes within 24 h, accompanied by a 4-fold increase in lactate dehydrogenase release, indicating its ability to perform PDT in human skin cells. The experimental results suggest that the asymmetrical porphyrin is a promising candidate theranostics agent for skin disorders.

9.
Biomedicines ; 12(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062004

RESUMO

Lipid metabolism dysregulation can lead to dyslipidemia and obesity, which are major causes of cardiovascular disease and associated mortality worldwide. The purpose of the study was to obtain and characterize six plant extracts (ACE-Allii cepae extractum; RSE-Rosmarini extractum; CHE-Cichorii extractum; CE-Cynarae extractum; AGE-Apii graveolentis extractum; CGE-Crataegi extractum) as promising adjuvant therapies for the prevention and treatment of dyslipidemia and its related metabolic diseases. Phytochemical screening revealed that RSE was the richest extract in total polyphenols (39.62 ± 13.16 g tannic acid/100 g dry extract) and phenolcarboxylic acids (22.05 ± 1.31 g chlorogenic acid/100 g dry extract). Moreover, the spectrophotometric chemical profile highlighted a significant concentration of flavones for CGE (5.32 ± 0.26 g rutoside/100 g dry extract), in contrast to the other extracts. UHPLC-MS quantification detected considerable amounts of phenolic constituents, especially chlorogenic acid in CGE (187.435 ± 1.96 mg/g extract) and rosmarinic acid in RSE (317.100 ± 2.70 mg/g extract). Rosemary and hawthorn extracts showed significantly stronger free radical scavenging activity compared to the other plant extracts (p < 0.05). Pearson correlation analysis and the heatmap correlation matrix indicated significant correlations between phytochemical contents and in vitro antioxidant activities. Computational studies were performed to investigate the potential anti-obesity mechanism of the studied extracts using target prediction, homology modeling, molecular docking, and molecular dynamics approaches. Our study revealed that rosmarinic acid (RA) and chlorogenic acid (CGA) can form stable complexes with the active site of carbonic anhydrase 5A by either interacting with the zinc-bound catalytic water molecule or by directly binding Zn2+. Further studies are warranted to experimentally validate the predicted CA5A inhibitory activities of RA and CGA and to investigate the hypolipidemic and antioxidant activities of the proposed plant extracts in animal models of dyslipidemia and obesity.

10.
Plants (Basel) ; 13(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794475

RESUMO

A promising strategy for combating bacterial infections involves the development of agents that disarm the virulence factors of pathogenic bacteria, thereby reducing their pathogenicity without inducing direct lethality. Sortase A, a crucial enzyme responsible for anchoring virulence factors to the cell surface of several pathogenic bacteria, has emerged as a possible target for antivirulence strategies. A series of hippocastanum species (Aesculus pavia, A. parviflora, Aesculus x carnea, and A. hippocastanum) were used to prepare ethanol- and water-based extracts for assessing their effect on Staphylococcus aureus sortase A. The extracts were characterized through HPLC analysis, and their polyphenols content was determined using the Folin-Ciocalteu method. The specific toxicity profile was evaluated in Daphnia magna using the median lethal concentration (LC50) and against the fibroblast MRHF cell line. The half maximal inhibitory concentration (IC50) values on sortase A, determined after 30 min of incubation, ranged from 82.70 to 304.31 µg/mL, with the A. pavia water extract exhibiting the highest inhibitory effect. The assessment of the A. pavia water extract on human fibroblasts revealed no significant signs of toxicity, even at a concentration of 500 µg/mL. This reduced toxicity was further validated through the Daphnia assay. These findings highlight the low toxicity and the potential of this extract as a promising source of future development of bacteria antivirulence solutions.

11.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732407

RESUMO

The present study focuses on the chemical characterization of a dry extract obtained from the species Ajuga chamaepitys (L.) Schreb, evaluating its antioxidant properties, toxicity, and in silico profile. Quantitative analysis of the dry extract revealed a notable amount of phytochemical compounds: 59.932 ± 21.167 mg rutin equivalents (mg REs)/g dry weight, 45.864 ± 4.434 mg chlorogenic acid equivalents (mg ChAEs)/g dry weight and, respectively, 83.307 ± 3.989 mg tannic acid equivalents (TAEs)/g dry weight. By UHPLC-HRMS/MS, the following were quantified as major compounds: caffeic acid (3253.8 µg/g extract) and kaempherol (3041.5 µg/g extract); more than 11 types of polyphenolic compounds were quantified (genistin 730.2 µg/g extract, naringenin 395 µg/g extract, apigenin 325.7 µg/g extract, galangin 283.3 µg/g extract, ferulic acid 254.3 µg/g extract, p-coumaric acid 198.2 µg/g extract, rutin 110.6 µg/g extract, chrysin 90.22 µg/g extract, syringic acid 84.2 µg/g extract, pinocembrin 32.7 µg/g extract, ellagic acid 18.2 µg/g extract). The antioxidant activity was in accordance with the amount of phytochemical compounds: IC50DPPH = 483.6 ± 41.4 µg/mL, IC50ABTS•+ = 127.4 ± 20.2 µg/mL, and EC50FRAP = 491.6 ± 2 µg/mL. On the larvae of Artemia sp., it was found that the extract has a low cytotoxic action. In silico studies have highlighted the possibility of inhibiting the activity of protein kinases CDK5 and GSK-3b for apigenin, galangin, and kaempferol, with possible utility for treating neurodegenerative pathologies and neuropathic pain. Further studies are warranted to confirm the predicted molecular mechanisms of action and to further investigate the therapeutic potential in animal models of neurological disorders.

12.
Pharmaceutics ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399299

RESUMO

Capsicum annuum (L.) is one of the essential spices most frequently used in our daily routine and has remarkable ethnobotanical and pharmacological properties. Its fruits are rich in vitamins, minerals, carotenoids, and numerous other phenolic metabolites with a well-known antioxidant activity. Regular consumption of chili fruits may have a positive influence on human health. Therefore, we investigated a commercially available chili fruit powder in the present study, extracting it with 50% ethanol. The dried hydro-ethanolic extract (CAE) was thoroughly analyzed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS), and 79 bioactive phenolic constituents were identified. Then, we quantified the main phenolic compounds and found a polyphenol content of 4.725 ± 1.361 mg Eq tannic acid/100 g extract and a flavonoid amount of 1.154 ± 0.044 mg Eq rutin/100 g extract. Phenolic secondary metabolites are known for their dual redox behavior as antioxidants/pro-oxidants, underlying their numerous benefits in health and disease. Thus, the antioxidant potential of CAE was evaluated using three methods; our results could explain the protective effects of chili fruits: IC50DPPH = 1.669 mg/mL, IC50ABTS = 0.200 mg/mL, and EC50FRAP = 0.561 mg/mL. The pro-oxidant potential of phenolic compounds could be a basis for CAE cytotoxicity, investigated in vitro on tumor cell lines and in vivo on Daphnia sp. Results demonstrated the dose- and time-dependent CAE's cytotoxic activity; the highest antiproliferative activity was recorded on colon (LoVo) and breast (MDA-MB-231) cancer cell lines after 48 h of exposure (IC50 values < 200 µg/mL). In vivo testing on Daphnia sp. reported a potent CAE cytotoxicity after 48 h and embryonic developmental delays. Extensive data analyses support our results, showing a significant correlation between the CAE's concentration, phenolic compound content, antioxidant activity, exposure time, and the viability rate of different tested cell lines.

13.
Antibiotics (Basel) ; 12(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508287

RESUMO

Essential oils (EOs) have gained economic importance due to their biological activities, and increasing amounts are demanded everywhere. However, substantial differences between the same essential oil samples from different suppliers are reported-concerning their chemical composition and bioactivities-due to numerous companies involved in EOs production and the continuous development of online sales. The present study investigates the antibacterial and antibiofilm activities of two to four samples of five commercially available essential oils (Oregano, Eucalyptus, Rosemary, Clove, and Peppermint oils) produced by autochthonous companies. The manufacturers provided all EOs' chemical compositions determined through GC-MS. The EOs' bioactivities were investigated in vitro against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The antibacterial and antibiofilm effects (ABE% and, respectively, ABfE%) were evaluated spectrophotometrically at 562 and 570 nm using microplate cultivation techniques. The essential oils' calculated parameters were compared with those of three standard broad-spectrum antibiotics: Amoxicillin/Clavulanic acid, Gentamycin, and Streptomycin. The results showed that at the first dilution (D1 = 25 mg/mL), all EOs exhibited antibacterial and antibiofilm activity against all Gram-positive and Gram-negative bacteria tested, and MIC value > 25 mg/mL. Generally, both effects progressively decreased from D1 to D3. Only EOs with a considerable content of highly active metabolites revealed insignificant differences. E. coli showed the lowest susceptibility to all commercially available essential oils-15 EO samples had undetected antibacterial and antibiofilm effects at D2 and D3. Peppermint and Clove oils recorded the most significant differences regarding chemical composition and antibacterial/antibiofilm activities. All registered differences could be due to different places for harvesting the raw plant material, various technological processes through which these essential oils were obtained, the preservation conditions, and complex interactions between constituents.

14.
Pharmaceutics ; 15(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631338

RESUMO

Endothelial dysfunction is the basis of the physiopathological mechanisms of vascular diseases. In addition to the therapeutic activity of plant extracts, cytotoxicity is significant. This research evaluates the cytotoxicity of three vegetal extracts (Calendulae flos extract-CE, Ginkgo bilobae folium extract-GE, and Sophorae flos extract-SE). In vitro evaluation was performed using an endothelial cell line model (Human Pulmonary Artery Endothelial Cells-HPAEC) when a dose-dependent cytotoxic activity was observed after 72 h. The IC50 values were calculated for all extracts: Calendulae flos extract (IC50 = 91.36 µg/mL), Sophorae flos extract (IC50 = 68.61 µg/mL), and Ginkgo bilobae folium extract (IC50 = 13.08 µg/mL). Therefore, at the level of HPAEC cells, the cytotoxicity of the extracts follows the order GE > SE > CE. The apoptotic mechanism implied in cell death was predicted for several phytocompounds using the PASS algorithm and molecular docking simulations, highlighting potential interactions with caspases-3 and -8. In vivo analysis was performed through brine shrimp lethality assay (BSLA) when lethal, behavioral, and cytological effects were evaluated on Artemia salina larvae. The viability examined after 24 h (assessment of lethal effects) follows the same sequence: CE > SE > GE. In addition, the predicted cell permeability was observed mainly for GE constituents through in silico studies. However, the extracts can be considered nontoxic according to Clarckson's criteria because no BSL% was registered at 1200 µg/mL. The obtained data reveal that all three extracts are safe for human use and suitable for incorporation in further pharmaceutical formulations.

15.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447070

RESUMO

The aim of the present study was to obtain, characterize, and evaluate the antioxidant potential of some extracts obtained from the bark of Betula alba var. pendula Roth., the root of Glycyrrhiza glabra L., and the green herb of the Avena sativa. The results revealed that the lowest IC50 value, determined by all three methods, was obtained for Betulae extractum (BE) (73.6 µg/mL-DPPH method, 11.2 µg/mL-ABTS method, and 58.7 µg/mL-FRAP method), followed by Liquiritiae extractum (LE) (805.6 µg/mL, 92.1 µg/mL, and 722 µg/mL) and Avenae extractum (1.13 mg/mL-DPPH method, 99.7 µg/mL-ABTS method, and 135.1 µg/mL-FRAP method). These results correlate with total polyphenols content (expressed in g tannic acid/100 g dry extract), with BE having more polyphenols than LE and AE (47.96 ± 9.7083 for BE, compared with 9.31 ± 0.9913 for LE and 40.55 ± 6.3715 for AE). The total flavonoid content (expressed as g rutoside/100 g dry extract) is similar for BE and LE (3.75 ± 0.3140 and 3.44 ± 0.3037) and smaller for AE (1.95 ± 0.0526). Therefore, Betulae extractum has the strongest antioxidant action, with an IC50 value very close to the standard used as a reference (ascorbic acid-16.5 µg/mL solution). The FT-ICR-MS analysis confirmed the presence of the major compounds in all three extracts. The antioxidant properties of the studied extracts were further supported by molecular docking experiments that revealed the potential of the analyzed phytochemicals to act as both noncovalent and covalent activators of the Nrf2 signaling pathway, with promising benefits in treating various skin disorders.

16.
Plants (Basel) ; 12(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068657

RESUMO

This comprehensive scientific review provides an in-depth analysis of both the natural compounds, pyrethrins, and their synthetic derivatives, pyrethroids, focusing on their classification, biosynthesis, mechanism of action, general and pharmaceutical uses, as well as their toxicity and environmental impact. Pyrethrins, derived from certain plant species, have long been recognized for their potent insecticidal properties. The review begins by examining the classification of pyrethrins and pyrethroids, elucidating their structural characteristics and unique features within the field of natural and synthetic compounds. The biosynthetic pathways responsible for producing pyrethrins in plants are discussed, highlighting the enzymatic reactions and genetic regulation involved. In addition, the synthesis of pyrethroid derivatives is explored, including both natural and synthetic sources and potential optimization strategies. Understanding the mechanisms of action by which pyrethrins and pyrethroids exert their insecticidal effects is a crucial aspect of this review. Complex interactions with the nervous systems of target organisms are examined, providing insights into their selective toxicity and modes of action. In addition, the various applications of these compounds are explored, from their use in agriculture for pest control to their incorporation into household insecticides and potential pharmaceutical applications. The review also critically evaluates the potential toxicity of pyrethrins and pyrethroids to human health. By consolidating current knowledge and research findings, this review provides a comprehensive understanding of the properties and applications of pyrethrins and pyrethroids, highlighting their benefits and risks, and the importance of responsible and sustainable use in various areas.

17.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38256895

RESUMO

In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were comparatively evaluated. The absorption and fluorescence properties, as well as atomic force microscopy measurements were performed to evaluate the photophysical characteristics as well as morphological and textural properties of the mentioned porphyrins. The cellular uptake of compounds and the effect of photodynamic therapy on the viability, proliferation, and necrosis of human HaCaT keratinocytes, human Hs27 skin fibroblasts, human skin SCL II squamous cell carcinoma, and B16F10 melanoma cells were assessed in vitro, in correlation with the structural and photophysical properties of the investigated porphyrins, and with the predictions regarding diffusion through cell membranes and ADMET properties. All samples were found to be isotropic and self-similar, with slightly different degrees of aggregability, had a relatively low predicted toxicity (class V), and a predicted long half-life after systemic administration. The in vitro study performed on non-malignant and malignant skin-relevant cells highlighted that the asymmetric P2.2 porphyrin qualified among the five investigated porphyrins to be a promising photosensitizer candidate for PDT in skin disorders. P2.2 was shown to accumulate well within cells, and induced by PDT a massive decrease in the number of metabolically active skin cells, partly due to cell death by necrosis. P2.2 had in this respect a better behavior than the symmetric P.2.1 compound and the related asymmetric compound P4.2. The strong action of P2.2-mediated PDT on normal skin cells might be an important drawback for further development of this compound. Meanwhile, the P3.1 and P3.2 compounds were not able to accumulate well in skin cells, and did not elicit significant PDT in vitro. Taken together, our experiments suggest that P2.2 can be a promising candidate for the development of novel photosensitizers for PDT in skin disorders.

18.
Plants (Basel) ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406834

RESUMO

Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 ± 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 ± 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32-37 °C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents.

19.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890128

RESUMO

Phenolic compounds represent an essential bioactive metabolites group with numerous pharmaceutical applications. Our study aims to identify and quantify phenolic constituents of various liquid and dry extracts of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from Calimani Mountains, Romania, and investigate their bioactivities. The extracts in acetone, 96% ethanol, and water with the same dried lichen/solvent ratio (w/v) were obtained through two conventional techniques: maceration (mUBA, mUBE, and mUBW) and Soxhlet extraction (dUBA, dUBE, and dUBW). High-performance liquid chromatography with diode-array detection (HPLC-DAD) was performed for usnic acid (UA) and different polyphenols quantification. Then, the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity (AA) were determined through spectrophotometric methods. Using the disc diffusion method (DDM), the antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria known for their pathogenicity: Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Pseudomonas aeruginosa (ATCC 27853), and Klebsiella pneumoniae (ATCC 13883). All extracts contain phenolic compounds expressed as TPC values. Five lichen extracts display various UA contents; this significant metabolite was not detected in dUBW. Six polyphenols from the standards mixture were quantified only in ethanol and water extracts; mUBE has all individual polyphenols, while dUBE shows only two. Three polyphenols were detected in mUBW, but none was found in dUBW. All U. barbata extracts had antiradical activity; however, only ethanol and acetone extracts proved inhibitory activity against P. aeruginosa, S. pneumoniae, and S. aureus. In contrast, K. pneumoniae was strongly resistant (IZD = 0). Data analysis evidenced a high positive correlation between the phenolic constituents and bioactivities of each U. barbata extract. Associating these extracts' properties with both conventional techniques used for their preparation revealed the extraction conditions' significant influence on lichen extracts metabolites profiling, with a powerful impact on their pharmacological potential.

20.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290658

RESUMO

Oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high death rate and an inadequate response to conventional chemotherapeutic drugs. Medical research explores plant extracts' properties to obtain potential nanomaterial-based anticancer drugs. The present study aims to formulate, develop, and characterize mucoadhesive oral films loaded with Usnea barbata (L.) dry acetone extract (F-UBA) and to investigate their anticancer potential for possible use in oral cancer therapy. U. barbata dry acetone extract (UBA) was solubilized in ethanol: isopropanol mixture and loaded in a formulation containing hydroxypropyl methylcellulose (HPMC) K100 and polyethylene glycol 400 (PEG 400). The UBA influence on the F-UBA pharmaceutical characteristics was evidenced compared with the references, i.e., mucoadhesive oral films containing suitable excipients but no active ingredient loaded. Both films were subjected to a complex analysis using standard methods to evaluate their suitability for topical administration on the oral mucosa. Physico-chemical and structural characterization was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Pharmacotechnical evaluation (consisting of the measurement of specific parameters: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time) proved that F-UBAs are suitable for oral mucosal administration. The brine shrimp lethality (BSL) assay was the F-UBA cytotoxicity prescreen. Cellular oxidative stress, caspase 3/7 activity, nuclear condensation, lysosomal activity, and DNA synthesis induced by F-UBA in blood cell cultures and oral epithelial squamous cell carcinoma (CLS-354) cell line were investigated through complex flow cytometry analyses. Moreover, F-UBA influence on both cell type division and proliferation was determined. Finally, using the resazurin-based 96-well plate microdilution method, the F-UBA antimicrobial potential was explored against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019. The results revealed that each UBA-loaded film contains 175 µg dry extract with a usnic acid (UA) content of 42.32 µg. F-UBAs are very thin (0.060 ± 0.002 mm), report a neutral pH (7.01 ± 0.01), a disintegration time of 146 ± 5.09 s, and an ex vivo mucoadhesion time of 85 ± 2.33 min, and they show a swelling ratio after 6 h of 211 ± 4.31%. They are suitable for topical administration on the oral mucosa. Like UA, they act on CLS-354 tumor cells, considerably increasing cellular oxidative stress, nuclear condensation, and autophagy and inducing cell cycle arrest in G0/G1. The F-UBAs inhibited the bacterial and fungal strains in a dose-dependent manner; they showed similar effects on both Candida sp. and higher inhibitory activity against P. aeruginosa than S. aureus. All these properties lead to considering the UBA-loaded mucoadhesive oral films suitable for potential application as a complementary therapy in OSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA