Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(9): 4114-4127, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39141927

RESUMO

Plasma-derived extracellular vesicles (pEVs) are a potential source of diseased biomarker proteins. However, characterizing the pEV proteome is challenging due to its relatively low abundance and difficulties in enrichment. This study presents a streamlined workflow to identify EV proteins from cancer patient plasma using minimal sample input. Starting with 400 µL of plasma, we generated a comprehensive pEV proteome using size exclusion chromatography (SEC) combined with HiRIEF prefractionation-based mass spectrometry (MS). First, we compared the performance of HiRIEF and long gradient MS workflows using control pEVs, quantifying 2076 proteins with HiRIEF. In a proof-of-concept study, we applied SEC-HiRIEF-MS to a small cohort (12) of metastatic lung adenocarcinoma (LUAD) and malignant melanoma (MM) patients. We also analyzed plasma samples from the same patients to study the relationship between plasma and pEV proteomes. We identified and quantified 1583 proteins in cancer pEVs and 1468 proteins in plasma across all samples. While there was substantial overlap, the pEV proteome included several unique EV markers and cancer-related proteins. Differential analysis revealed 30 DEPs in LUAD vs the MM group, highlighting the potential of pEVs as biomarkers. This work demonstrates the utility of a prefractionation-based MS for comprehensive pEV proteomics and EV biomarker discovery. Data are available via ProteomeXchange with the identifiers PXD039338 and PXD038528.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Espectrometria de Massas , Melanoma , Proteoma , Proteômica , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Proteômica/métodos , Melanoma/sangue , Proteoma/análise , Espectrometria de Massas/métodos , Neoplasias Pulmonares/sangue , Cromatografia em Gel , Biomarcadores Tumorais/sangue , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/patologia , Proteínas Sanguíneas/análise
2.
Haematologica ; 108(9): 2422-2434, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924254

RESUMO

Langerhans cell histiocytosis (LCH) is a potentially life-threatening inflammatory myeloid neoplasia linked to pediatric neurodegeneration, whereby transformed LCH cells form agglomerated lesions in various organs. Although MAP-kinase pathway mutations have been identified in LCH cells, the functional consequences of these mutations and the mechanisms that cause the pathogenic behavior of LCH cells are not well understood. In our study, we used an in vitro differentiation system and RNA-sequencing to compare monocyte-derived dendritic cells from LCH patients to those derived from healthy controls or patients with Crohn's disease, a non-histiocytic inflammatory disease. We observed that interferon-γ treatment exacerbated intrinsic differences between LCH patient and control cells, including strikingly increased endo- and exocytosis gene activity in LCH patients. We validated these transcriptional patterns in lesions and functionally confirmed that LCH cells exhibited increased endo- and exocytosis. Furthermore, RNA-sequencing of extracellular vesicles revealed the enrichment of pathological transcripts involved in cell adhesion, MAP-kinase pathway, vesicle trafficking and T-cell activation in LCH patients. Thus, we tested the effect of the LCH secretome on lymphocyte activity and found significant activation of NK cells. These findings implicate extracellular vesicles in the pathology of LCH for the first time, in line with their established roles in the formation of various other tumor niches. Thus, we describe novel traits of LCH patient cells and suggest a pathogenic mechanism of potential therapeutic and diagnostic importance.


Assuntos
Histiocitose de Células de Langerhans , Neoplasias , Humanos , Criança , Secretoma , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/tratamento farmacológico , Histiocitose de Células de Langerhans/patologia , Células Mieloides/metabolismo , Células Matadoras Naturais/metabolismo
3.
J Immunol ; 206(12): 2839-2851, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117106

RESUMO

Neonatal and infant immune responses are characterized by a limited capability to generate protective Ab titers and memory B cells as seen in adults. Multiple studies support an immature or even impaired character of umbilical cord blood (UCB) B cells themselves. In this study, we provide a comprehensive molecular and functional comparison of B cell subsets from UCB and adult peripheral blood. Most UCB B cells have a mature, naive B cell phenotype as seen in adults. The UCB Ig repertoire is highly variable but interindividually conserved, as BCR clonotypes are frequently shared between neonates. Furthermore, UCB B cells show a distinct transcriptional program that confers accelerated responsiveness to stimulation and facilitated IgA class switching. Stimulation drives extensive differentiation into Ab-secreting cells, presumably limiting memory B cell formation. Humanized mice suggest that the distinctness of UCB versus adult B cells is already reflected by the developmental program of hematopoietic precursors, arguing for a layered B-1/B-2 lineage system as in mice, albeit our findings suggest only partial comparability to murine B-1 cells. Our study shows that UCB B cells are not immature or impaired but differ from their adult mature counterpart in a conserved BCR repertoire, efficient IgA class switching, and accelerated, likely transient response dynamics.


Assuntos
Linfócitos B/imunologia , Sangue Fetal/imunologia , Imunoglobulinas/imunologia , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos B/imunologia
4.
Small ; 17(14): e2008155, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682363

RESUMO

Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.


Assuntos
Vesículas Extracelulares , Biofísica , Comunicação Celular , Criança , Humanos , Microscopia de Fluorescência , Tetraspaninas
5.
Cytometry A ; 97(6): 602-609, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32415810

RESUMO

Extracellular vesicles (EVs) are released from basically all cells. Over the last decade, small EVs (sEVs; 50-150 nm) have gained enormous attention in diagnostics and therapy. However, methodological limitations coupled to the lack of EV standards leave many questions in this quickly evolving field unresolved. Recently, by using enhanced green fluorescent protein (eGFP)-labeled sEVs as biological reference material, we systematically optimized imaging flow cytometry for single sEV analysis. Furthermore, we showed that sEVs stained with different fluorescent antibodies can be analyzed in a multiparametric manner. However, many parameters potentially affecting the sEV staining procedure still require further evaluation and optimization. Here, we present a concise, systematic evaluation of the impact of the incubation temperature (4°C, room temperature and 37°C) during sEV antibody staining on the outcome of experiments involving the staining of EVs with fluorescence-conjugated antibodies. We provide evidence that both the staining intensity and the sample recovery can vary depending on the incubation temperature applied, and that observed differences are less pronounced following prolonged incubation times. In addition, this study can serve as an application-specific example of parameter evaluation in EV flow cytometry. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Vesículas Extracelulares , Anticorpos , Citometria de Fluxo , Coloração e Rotulagem , Temperatura
6.
Biochem Biophys Res Commun ; 504(4): 749-752, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217447

RESUMO

Many cancer types carry mutations in protein tyrosine kinase (PTK) and such alterations frequently drive tumor progression. One category is gene translocation of PTKs yielding chimeric proteins with transforming capacity. In this study, we characterized the role of ITK-FER [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with Feline Encephalitis Virus-Related kinase (FER) gene] and ITK-SYK [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with the Spleen Tyrosine Kinase (SYK)] in Peripheral T Cell Lymphoma (PTCL) signaling. We observed an induction of tyrosine phosphorylation events in the presence of both ITK-FER and ITK-SYK. The downstream targets of ITK-FER and ITK-SYK were explored and STAT3 was found to be highly phosphorylated by these fusion kinases. In addition, the CD69 T-cell activation marker was significantly elevated. Apart from tyrosine kinase inhibitors acting directly on the fusions, we believe that drugs acting on downstream targets could serve as alternative cancer therapies for fusion PTKs.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Células Jurkat , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Fosforilação , Proteínas Tirosina Quinases/genética , Quinase Syk/genética , Quinase Syk/metabolismo , Translocação Genética
7.
Haematologica ; 103(4): 614-625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29326122

RESUMO

Differentiation of hematopoietic stem cells is regulated by a concert of different transcription factors. Disturbed transcription factor function can be the basis of (pre)malignancies such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Growth factor independence 1b (Gfi1b) is a repressing transcription factor regulating quiescence of hematopoietic stem cells and differentiation of erythrocytes and platelets. Here, we show that low expression of Gfi1b in blast cells is associated with an inferior prognosis of MDS and AML patients. Using different models of human MDS or AML, we demonstrate that AML development was accelerated with heterozygous loss of Gfi1b, and latency was further decreased when Gfi1b was conditionally deleted. Loss of Gfi1b significantly increased the number of leukemic stem cells with upregulation of genes involved in leukemia development. On a molecular level, we found that loss of Gfi1b led to epigenetic changes, increased levels of reactive oxygen species, as well as alteration in the p38/Akt/FoXO pathways. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS and AML development.


Assuntos
Leucemia Mieloide Aguda/etiologia , Síndromes Mielodisplásicas/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Animais , Epigenômica , Proteína Forkhead Box O1/metabolismo , Deleção de Genes , Heterozigoto , Homozigoto , Humanos , Camundongos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Mol Ther ; 24(8): 1423-34, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27112062

RESUMO

Recent clinical trials with chimeric antigen receptor (CAR) redirected T cells targeting CD19 revealed particular efficacy in the treatment of leukemia/lymphoma, however, were accompanied by a lasting depletion of healthy B cells. We here explored CD30 as an alternative target, which is validated in lymphoma therapy and expressed by a broad variety of Hodgkin's and non-Hodgkin's lymphomas. As a safty concern, however, CD30 is also expressed by lymphocytes and hematopoietic stem and progenitor cells (HSPCs) during activation. We revealed that HRS3scFv-derived CAR T cells are superior since they were not blocked by soluble CD30 and did not attack CD30(+) HSPCs while eliminating CD30(+) lymphoma cells. Consequently, normal hemato- and lymphopoiesis was not affected in the long-term in the humanized mouse; the number of blood B and T cells remained unchanged. We provide evidence that the CD30(+) HSPCs are protected against a CAR T-cell attack by substantially lower CD30 levels than lymphoma cells and higher levels of the granzyme B inactivating SP6/PI9 serine protease, which furthermore increased upon activation. Taken together, adoptive cell therapy with anti-CD30 CAR T cells displays a superior therapeutic index in the treatment of CD30(+) malignancies leaving healthy activated lymphocytes and HSPCs unaffected.

10.
Br J Haematol ; 169(6): 868-78, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25819405

RESUMO

The success of haematopoietic stem cell (HSC) transplantation largely depends on numbers of transplanted HSCs, which reside in the CD34(+) populations of bone marrow (BM), peripheral blood stem cells (PBSC) and umbilical cord blood (UCB). More specifically HSCs reside in the CD38(low/-) subpopulation, which cannot be objectively discriminated from mature CD34(+)  CD38(+) progenitors. Thus, better marker combinations for the quantification of more primitive haematopoietic stem and progenitor cells in transplants are required. Recently, by combining CD34 and CD133 we could clearly distinguish CD133(+)  CD34(+) multipotent and lympho-myeloid from CD133(low)  CD34(+) erythro-myeloid progenitors in UCB samples. To qualify the assessment of CD133 for routine quality control of adult HSC sources, we analysed the developmental potentials of CD133(+) and CD133(low) subpopulations in BM and PBSC. Similar to UCB, CD133 expression objectively discriminated functionally distinct subpopulations in adult HSC sources. By implementing anti-CD45RA staining, which separates multipotent (CD133(+)  CD34(+)  CD45RA(-) ) from lympho-myeloid (CD133(+)  CD34(+)  CD45RA(+) ) progenitor fractions, UCB was found to contain 2-3 times higher multipotent progenitor frequencies than BM and PBSC. To test for the consistency of CD133 expression, we compared CD133(+)  CD34(+) contents of 128 UCB samples with maternal and obstetrical factors and obtained similar correlations to related studies focusing on CD34(+) cell contents. In conclusion, implementation of anti-CD133 staining into existing routine panels will improve the quality control analyses for HSC transplants.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Peptídeos/metabolismo , Fenótipo , Antígeno AC133 , Antígenos CD34/metabolismo , Células da Medula Óssea/metabolismo , Ensaio de Unidades Formadoras de Colônias , Feminino , Sangue Fetal/química , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunofenotipagem , Recém-Nascido , Antígenos Comuns de Leucócito/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Doadores de Tecidos
12.
Stem Cell Res Ther ; 15(1): 77, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475970

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) can regenerate tissues through engraftment and differentiation but also via paracrine signalling via extracellular vesicles (EVs). Fetal-derived MSCs (fMSCs) have been shown, both in vitro and in animal studies, to be more efficient than adult MSC (aMSCs) in generating bone and muscle but the underlying reason for this difference has not yet been clearly elucidated. In this study, we aimed to systematically investigate the differences between fetal and adult MSCs and MSC-derived EVs at the phenotypic, RNA, and protein levels. METHODS: We carried out a detailed and comparative characterization of culture-expanded fetal liver derived MSCs (fMSCs) and adult bone marrow derived MSCs (aMSCs) phenotypically, and the MSCs and MSC-derived EVs were analysed using transcriptomics and proteomics approaches with RNA Sequencing and Mass Spectrometry. RESULTS: Fetal MSCs were smaller, exhibited increased proliferation and colony-forming capacity, delayed onset of senescence, and demonstrated superior osteoblast differentiation capability compared to their adult counterparts. Gene Ontology analysis revealed that fMSCs displayed upregulated gene sets such as "Positive regulation of stem cell populations", "Maintenance of stemness" and "Muscle cell development/contraction/Myogenesis" in comparison to aMSCs. Conversely, aMSCs displayed upregulated gene sets such as "Complement cascade", "Adipogenesis", "Extracellular matrix glycoproteins" and "Cellular metabolism", and on the protein level, "Epithelial cell differentiation" pathways. Signalling entropy analysis suggested that fMSCs exhibit higher signalling promiscuity and hence, higher potency than aMSCs. Gene ontology comparisons revealed that fetal MSC-derived EVs (fEVs) were enriched for "Collagen fibril organization", "Protein folding", and "Response to transforming growth factor beta" compared to adult MSC-derived EVs (aEVs), whereas no significant difference in protein expression in aEVs compared to fEVs could be detected. CONCLUSIONS: This study provides detailed and systematic insight into the differences between fMSCs and aMSCs, and MSC-derived EVs. The key finding across phenotypic, transcriptomic and proteomic levels is that fMSCs exhibit higher potency than aMSCs, meaning they are in a more undifferentiated state. Additionally, fMSCs and fMSC-derived EVs may possess greater bone forming capacity compared to aMSCs. Therefore, using fMSCs may lead to better treatment efficacy, especially in musculoskeletal diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Transcriptoma , Proteômica , Células-Tronco Mesenquimais/metabolismo , Perfilação da Expressão Gênica , Vesículas Extracelulares/metabolismo
13.
J Extracell Vesicles ; 13(10): e12523, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39400515

RESUMO

Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.


Assuntos
Cromatografia de Afinidade , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Cromatografia de Afinidade/métodos , Humanos , Tetraspanina 28/metabolismo , MicroRNAs , Células HEK293
14.
Adv Sci (Weinh) ; : e2407619, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246205

RESUMO

Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.

15.
J Extracell Vesicles ; 13(1): e12396, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179654

RESUMO

Cardiac progenitor cell (CPC)-derived small extracellular vesicles (sEVs) exhibit great potential to stimulate cardiac repair. However, the multifaceted nature of sEV heterogeneity presents a challenge in understanding the distinct mechanisms underlying their regenerative abilities. Here, a dual-step multimodal flowthrough and size-exclusion chromatography method was applied to isolate and separate CPC-derived sEV subpopulations to study the functional differences related to cardiac repair responses. Three distinct sEV subpopulations were identified with unique protein profiles. Functional cell assays for cardiac repair-related processes demonstrated that the middle-sized and smallest-sized sEV subpopulations exhibited the highest pro-angiogenic and anti-fibrotic activities. Proteasome activity was uniquely seen in the smallest-sized subpopulation. The largest-sized subpopulation showed no effect in any of the functional assays. This research uncovers the existence of sEV subpopulations, each characterized by a distinct composition and biological function. Enhancing our understanding of sEV heterogeneity will provide valuable insights into sEV mechanisms of action, ultimately accelerating the translation of sEV therapeutics.


Assuntos
Vesículas Extracelulares , Bioensaio , Cromatografia em Gel
16.
J Extracell Vesicles ; 13(6): e12463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868945

RESUMO

Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.


Assuntos
Biomarcadores , Vesículas Extracelulares , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Biomarcadores/metabolismo , Citometria de Fluxo/métodos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/análise , Células Cultivadas , Antígenos CD/metabolismo
17.
Nat Biomed Eng ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769158

RESUMO

Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.

18.
Int J Cancer ; 133(7): 1653-63, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23526263

RESUMO

Myeloid derived suppressor cells (MDSCs) suppress innate and adaptive immunity, thereby limiting anti-tumor immune responses in cancer patients. In patients with advanced melanoma, the phenotype and function of MDSCs remains controversial. In our study, we further explored two distinct subpopulations of MDSCs and investigated the impact of Vemurafenib on these cells. Flow cytometry analysis revealed that in comparison to healthy donors and patients with localized disease, PBMCs from patients with metastatic melanoma showed an increased frequency of CD14(+) HLA-DR(-/low) monocytic MDSCs (moMDSCs) and of a previously unrecognized population of CD14(-) CD66b(+) Arginase1(+) granulocytic MDSCs (grMDSCs). In vitro, both populations suppressed autologous T-cell proliferation, which was tested in CFSE-based proliferation assays. Vemurafenib treatment of melanoma patients reduced the frequency of both moMDSCs and grMDSCs. According to our in vivo finding, conditioned medium (CM) from Vemurafenib treated melanoma cells was less active in inducing moMDSCs in vitro than CM from untreated melanoma cells. In conclusion, patients with advanced melanoma show increased levels of moMDSCs, and of a population of CD14(-) CD66b(+) Arginase1(+) grMDSCs. Both MDSCs are distinct populations capable of suppressing autologous T-cell responses independently of each other. In vitro as well as in vivo, Vemurafenib inhibits the generation of human moMDSCs. Thus, Vemurafenib decreases immunosuppression in patients with advanced melanoma, indicating its potential as part of future immunotherapies.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Indóis/farmacologia , Melanoma/imunologia , Células Mieloides , Sulfonamidas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Arginase/metabolismo , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Indóis/uso terapêutico , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Sulfonamidas/uso terapêutico , Linfócitos T/imunologia , Células Tumorais Cultivadas , Vemurafenib
19.
Nanoscale Adv ; 5(6): 1691-1705, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926576

RESUMO

BACKGROUND: Extracellular vesicles (EV) are cell-derived vesicles released by all cells in health and disease. Accordingly, EVs are also released by cells in acute myeloid leukemia (AML), a hematologic malignancy characterized by uncontrolled growth of immature myeloid cells, and these EVs likely carry markers and molecular cargo reflecting the malignant transformation occurring in diseased cells. Monitoring antileukemic or proleukemic processes during disease development and treatment is essential. Therefore, EVs and EV-derived microRNA (miRNA) from AML samples were explored as biomarkers to distinguish disease-related patterns ex vivo or in vivo. METHODOLOGY: EVs were purified from serum of healthy (H) volunteers and AML patients by immunoaffinity. EV surface protein profiles were analyzed by multiplex bead-based flow cytometry (MBFCM) and total RNA was isolated from EVs prior to miRNA profiling via small RNA sequencing. RESULTS: MBFCM revealed different surface protein patterns in H versus AML EVs. miRNA analysis showed individual as well as highly dysregulated patterns in H and AML samples. CONCLUSIONS: In this study, we provide a proof-of-concept for the discriminative potential of EV derived miRNA profiles as biomarkers in H versus AML samples.

20.
Cell Death Discov ; 9(1): 260, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495566

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a fast-increasing cancer with metastatic potential. Extracellular vesicles (EVs) are small membrane-bound vesicles that play important roles in intercellular communication, particularly in the tumor microenvironment (TME). Here we report that cSCC cells secrete an increased number of EVs relative to normal human epidermal keratinocytes (NHEKs) and that interfering with the capacity of cSCC to secrete EVs inhibits tumor growth in vivo in a xenograft model of human cSCC. Transcriptome analysis of tumor xenografts by RNA-sequencing enabling the simultaneous quantification of both the human and the mouse transcripts revealed that impaired EV-production of cSCC cells prominently altered the phenotype of stromal cells, in particular genes related to extracellular matrix (ECM)-formation and epithelial-mesenchymal transition (EMT). In line with these results, co-culturing of human dermal fibroblasts (HDFs) with cSCC cells, but not with normal keratinocytes in vitro resulted in acquisition of cancer-associated fibroblast (CAF) phenotype. Interestingly, EVs derived from metastatic cSCC cells, but not primary cSCCs or NHEKs, were efficient in converting HDFs to CAFs. Multiplex bead-based flow cytometry assay and mass-spectrometry (MS)-based proteomic analyses revealed the heterogenous cargo of cSCC-derived EVs and that especially EVs derived from metastatic cSCCs carry proteins associated with EV-biogenesis, EMT, and cell migration. Mechanistically, EVs from metastatic cSCC cells result in the activation of TGFß signaling in HDFs. Altogether, our study suggests that cSCC-derived EVs mediate cancer-stroma communication, in particular the conversion of fibroblasts to CAFs, which eventually contribute to cSCC progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA