Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 592(7856): 799-803, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854232

RESUMO

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclina D/metabolismo , Instabilidade Genômica , Fase S , Animais , Linhagem Celular , Proliferação de Células , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Humanos , Camundongos , Camundongos Knockout , Mutações Sintéticas Letais
2.
Am J Hum Genet ; 102(2): 249-265, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395072

RESUMO

Townes-Brocks syndrome (TBS) is characterized by a spectrum of malformations in the digits, ears, and kidneys. These anomalies overlap those seen in a growing number of ciliopathies, which are genetic syndromes linked to defects in the formation or function of the primary cilia. TBS is caused by mutations in the gene encoding the transcriptional repressor SALL1 and is associated with the presence of a truncated protein that localizes to the cytoplasm. Here, we provide evidence that SALL1 mutations might cause TBS by means beyond its transcriptional capacity. By using proximity proteomics, we show that truncated SALL1 interacts with factors related to cilia function, including the negative regulators of ciliogenesis CCP110 and CEP97. This most likely contributes to more frequent cilia formation in TBS-derived fibroblasts, as well as in a CRISPR/Cas9-generated model cell line and in TBS-modeled mouse embryonic fibroblasts, than in wild-type controls. Furthermore, TBS-like cells show changes in cilia length and disassembly rates in combination with aberrant SHH signaling transduction. These findings support the hypothesis that aberrations in primary cilia and SHH signaling are contributing factors in TBS phenotypes, representing a paradigm shift in understanding TBS etiology. These results open possibilities for the treatment of TBS.


Assuntos
Anormalidades Múltiplas/genética , Anus Imperfurado/genética , Cílios/metabolismo , Perda Auditiva Neurossensorial/genética , Mutação/genética , Polegar/anormalidades , Fatores de Transcrição/genética , Animais , Citoplasma/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Recém-Nascido , Camundongos , Fenótipo , Ligação Proteica , Proteômica , Transdução de Sinais
3.
J Cell Sci ; 132(20)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31578236

RESUMO

Post-translational modifications directly control protein activity and, thus, they represent an important means to regulate the responses of cells to different stimuli. Protein SUMOylation has recently been recognised as one such modification, and it has been associated with various diseases, including different types of cancer. However, the precise way that changes in SUMOylation influence the tumorigenic properties of cells remains to be fully clarified. Here, we show that blocking the SUMO pathway by depleting SUMO1 and UBC9, or by exposure to ginkgolic acid C15:1 or 2-D08 (two different SUMOylation inhibitors), induces cell death, also inhibiting the invasiveness of tumour cells. Indeed, diminishing the formation of SUMO1 complexes induces autophagy-mediated cancer cell death through increasing the expression of Tribbles pseudokinase 3 (TRIB3). Moreover, we found that blocking the SUMO pathway inhibits tumour cell invasion by decreasing RAC1 SUMOylation. These findings shed new light on the mechanisms by which SUMO1 modifications regulate the survival, and the migratory and invasive capacity of tumour cells, potentially establishing the bases to develop novel anti-cancer treatments based on the inhibition of SUMOylation.


Assuntos
Morte Celular Autofágica , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação , Proteínas rac1 de Ligação ao GTP/metabolismo , Humanos , Células MCF-7 , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Proteína SUMO-1/genética , Proteínas rac1 de Ligação ao GTP/genética
4.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771470

RESUMO

BACKGROUND: Tribbles pseudokinase 3 (TRIB3) has been proposed to both promote and restrict cancer generation and progression. However, the precise mechanisms that determine this dual role of TRIB3 in cancer remain to be understood. In this study we aimed to investigate the role of TRIB3 in luminal breast cancer, the most frequent subtype of this malignancy. METHODS: We genetically manipulated TRIB3 expression in a panel of luminal breast cancer cell lines and analyzed its impact on cell proliferation, and the phosphorylation, levels, or subcellular localization of TRIB3 and other protein regulators of key signaling pathways in luminal breast cancer. We also analyzed TRIB3 protein expression in samples from luminal breast cancer patients and performed bioinformatic analyses in public datasets. RESULTS: TRIB3 enhanced the proliferation and AKT phosphorylation in luminal A (HER2-) but decreased them in luminal B (HER2+) breast cancer cell lines. TRIB3 negatively regulated the stability of HER2 in luminal B breast cancer cell lines. TRIB3 expression was associated with increased disease-free survival and a better response to therapy in luminal breast cancer patients. CONCLUSIONS: Our findings support the exploration of TRIB3 as a potential biomarker and therapeutic target in luminal breast cancer.

5.
Theranostics ; 10(11): 5120-5136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308772

RESUMO

Glioblastoma (GBM) is one of the most aggressive forms of cancer. It has been proposed that the presence within these tumors of a population of cells with stem-like features termed Glioma Initiating Cells (GICs) is responsible for the relapses that take place in the patients with this disease. Targeting this cell population is therefore an issue of great therapeutic interest in neuro-oncology. We had previously found that the neurotrophic factor MIDKINE (MDK) promotes resistance to glioma cell death. The main objective of this work is therefore investigating the role of MDK in the regulation of GICs. Methods: Assays of gene and protein expression, self-renewal capacity, autophagy and apoptosis in cultures of GICs derived from GBM samples subjected to different treatments. Analysis of the growth of GICs-derived xenografts generated in mice upon blockade of the MDK and its receptor the ALK receptor tyrosine kinase (ALK) upon exposure to different treatments. Results: Genetic or pharmacological inhibition of MDK or ALK decreases the self-renewal and tumorigenic capacity of GICs via the autophagic degradation of the transcription factor SOX9. Blockade of the MDK/ALK axis in combination with temozolomide depletes the population of GICs in vitro and has a potent anticancer activity in xenografts derived from GICs. Conclusions: The MDK/ALK axis regulates the self-renewal capacity of GICs by controlling the autophagic degradation of the transcription factor SOX9. Inhibition of the MDK/ALK axis may be a therapeutic strategy to target GICs in GBM patients.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Midkina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Temozolomida/farmacologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Animais , Antineoplásicos Alquilantes/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular , Feminino , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Midkina/antagonistas & inibidores , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA