Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249555

RESUMO

Thanks to the fantastic progress in cancer therapy options, there is a growing population of cancer survivors. This success has resulted in a need to focus much effort into improving the quality of life of this population. Cancer and cardiovascular disease share many common risk factors and have an interplay between them, with one condition mechanistically affecting the other and vice versa. Furthermore, widely prescribed cancer therapies have known toxic effects in the cardiovascular system. Anthracyclines are the paradigm of efficacious cancer therapy widely prescribed with a strong cardiotoxic potential. While some cancer therapies cardiovascular toxicities are transient, others are irreversible. There is a growing need to develop cardioprotective therapies that, when used in conjunction with cancer therapies, can prevent cardiovascular toxicity and thus improve long-term quality of life in survivors. The field has three main challenges: (i) identification of the ultimate mechanisms leading to cardiotoxicity to (ii) identify specific therapeutic targets, and (iii) more sensible diagnostic tools to early identify these conditions. In this review we will focus on the cardioprotective strategies tested and under investigation. We will focus this article into anthracycline cardiotoxicity since it is still the agent most widely prescribed, the one with higher toxic effects on the heart, and the most widely studied.

2.
Basic Res Cardiol ; 119(3): 419-433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38536505

RESUMO

Right ventricular (RV) failure remains the strongest determinant of survival in pulmonary hypertension (PH). We aimed to identify relevant mechanisms, beyond pressure overload, associated with maladaptive RV hypertrophy in PH. To separate the effect of pressure overload from other potential mechanisms, we developed in pigs two experimental models of PH (M1, by pulmonary vein banding and M2, by aorto-pulmonary shunting) and compared them with a model of pure pressure overload (M3, pulmonary artery banding) and a sham-operated group. Animals were assessed at 1 and 8 months by right heart catheterization, cardiac magnetic resonance and blood sampling, and myocardial tissue was analyzed. Plasma unbiased proteomic and metabolomic data were compared among groups and integrated by an interaction network analysis. A total of 33 pigs completed follow-up (M1, n = 8; M2, n = 6; M3, n = 10; and M0, n = 9). M1 and M2 animals developed PH and reduced RV systolic function, whereas animals in M3 showed increased RV systolic pressure but maintained normal function. Significant plasma arginine and histidine deficiency and complement system activation were observed in both PH models (M1&M2), with additional alterations to taurine and purine pathways in M2. Changes in lipid metabolism were very remarkable, particularly the elevation of free fatty acids in M2. In the integrative analysis, arginine-histidine-purines deficiency, complement activation, and fatty acid accumulation were significantly associated with maladaptive RV hypertrophy. Our study integrating imaging and omics in large-animal experimental models demonstrates that, beyond pressure overload, metabolic alterations play a relevant role in RV dysfunction in PH.


Assuntos
Modelos Animais de Doenças , Hipertensão Pulmonar , Hipertrofia Ventricular Direita , Metabolômica , Proteômica , Animais , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/diagnóstico por imagem , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/diagnóstico por imagem , Função Ventricular Direita , Remodelação Ventricular , Sus scrofa , Suínos , Masculino
3.
Europace ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39298664

RESUMO

BACKGROUND AND AIMS: There is lack of agreement on late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging processing for guiding ventricular tachycardia (VT) ablation. We aim at developing and validating a systematic processing approach on LGE-CMR images to identify VT corridors that contain critical VT isthmus sites. METHODS: Translational study including 18 pigs with established myocardial infarction and inducible VT undergoing in vivo characterization of the anatomical and functional myocardial substrate associated with VT maintenance. Clinical validation was conducted in a multicenter series of 33 patients with ischemic cardiomyopathy undergoing VT ablation. Three-dimensional CMR-LGE images were processed using systematic scanning of 15 signal intensity (SI) cut-off ranges to obtain surface visualization of all potential VT corridors. Analysis and comparisons of imaging and electrophysiological data were performed in individuals with full electrophysiological characterization of the isthmus sites of at least one VT morphology. RESULTS: In both the experimental pig model and patients undergoing VT ablation, all the electrophysiologically-defined isthmus sites (n=11 and n=19, respectively) showed overlapping regions with CMR-based potential VT corridors. Such imaging-based VT corridors were less specific than electrophysiologically-guided ablation lesions at critical isthmus sites. However, an optimized strategy using the 7 most relevant SI cut-off ranges among patients showed an increase in specificity compared to using 15 SI cut-off ranges (70% vs 62%, respectively), without diminishing the capability to detect VT isthmus sites (sensitivity 100%). CONCLUSIONS: Systematic imaging processing of LGE-CMR sequences using several SI cut-off ranges may improve and standardize procedure planning to identify VT isthmus sites.

4.
Basic Res Cardiol ; 115(3): 33, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291522

RESUMO

Nonrevascularizable coronary artery disease is a frequent cause of hibernating myocardium leading to heart failure (HF). Currently, there is a paucity of therapeutic options for patients with this condition. There is a lack of animal models resembling clinical features of hibernating myocardium. Here we present a large animal model of hibernating myocardium characterized by serial multimodality imaging. Yucatan minipigs underwent a surgical casein ameroid implant around the proximal left anterior descending coronary artery (LAD), resulting in a progressive obstruction of the vessel. Pigs underwent serial multimodality imaging including invasive coronary angiography, cardiac magnetic resonance (CMR), and hybrid 18F-Fluorodeoxyglucose positron emission tomography-computed tomography (FDG-PET/CT). A total of 43 pigs were operated on and were followed for 120 ± 37 days with monthly multimodality imaging. 24 pigs (56%) died during the follow-up. Severe LAD luminal stenosis was documented in all survivors. In the group of 19 long-term survivors, 17 (90%) developed left ventricular systolic dysfunction [median LVEF of 35% (IQR 32.5-40.5%)]. In 17/17, at-risk territory was viable on CMR and 14 showed an increased glucose uptake in the at-risk myocardium on 18FDG-PET/CT. The present pig model resembles most of the human hibernated myocardium characteristics and associated heart failure (systolic dysfunction, viable myocardium, and metabolic switch to glucose). This human-like model might be used to test novel interventions for nonrevascularizable coronary artery disease and ischemia heart failure as a previous stage to clinical trials.


Assuntos
Modelos Animais de Doenças , Miocárdio Atordoado/patologia , Animais , Angiografia Coronária/métodos , Insuficiência Cardíaca/patologia , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Suínos , Porco Miniatura , Pesquisa Translacional Biomédica
5.
Basic Res Cardiol ; 115(5): 55, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32748088

RESUMO

Early metoprolol administration protects against myocardial ischemia-reperfusion injury, but its effect on infarct size progression (ischemic injury) is unknown. Eight groups of pigs (total n = 122) underwent coronary artery occlusion of varying duration (20, 25, 30, 35, 40, 45, 50, or 60 min) followed by reperfusion. In each group, pigs were randomized to i.v. metoprolol (0.75 mg/kg) or vehicle (saline) 20 min after ischemia onset. The primary outcome measure was infarct size (IS) on day7 cardiac magnetic resonance (CMR) normalized to area at risk (AAR, measured by perfusion computed tomography [CT] during ischemia). Metoprolol treatment reduced overall mortality (10% vs 26%, p = 0.03) and the incidence and number of primary ventricular fibrillations during infarct induction. In controls, IS after 20-min ischemia was ≈ 5% of the area AAR. Thereafter, IS progressed exponentially, occupying almost all the AAR after 35 min of ischemia. Metoprolol injection significantly reduced the slope of IS progression (p = 0.004 for final IS). Head-to-head comparison (metoprolol treated vs vehicle treated) showed statistically significant reductions in IS at 30, 35, 40, and 50-min reperfusion. At 60-min reperfusion, IS was 100% of AAR in both groups. Despite more prolonged ischemia, metoprolol-treated pigs reperfused at 50 min had smaller infarcts than control pigs undergoing ischemia for 40 or 45 min and similar-sized infarcts to those undergoing 35-min ischemia. Day-45 LVEF was higher in metoprolol-treated vs vehicle-treated pigs (41.6% vs 36.5%, p = 0.008). In summary, metoprolol administration early during ischemia attenuates IS progression and reduces the incidence of primary ventricular fibrillation. These data identify metoprolol as an intervention ideally suited to the treatment of STEMI patients identified early in the course of infarction and requiring long transport times before primary angioplasty.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/administração & dosagem , Metoprolol/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Administração Intravenosa , Animais , Técnicas de Imagem Cardíaca , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Imageamento por Ressonância Magnética , Masculino , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Suínos , Fatores de Tempo
6.
J Nucl Cardiol ; 27(4): 1249-1260, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-30927149

RESUMO

BACKGROUND: Here we evaluated the feasibility of PET with Gallium-68 (68Ga)-labeled DOTA for non-invasive assessment of myocardial blood flow (MBF) and extracellular volume fraction (ECV) in a pig model of myocardial infarction. We also aimed to validate MBF measurements using microspheres as a gold standard in healthy pigs. METHODS: 8 healthy pigs underwent three sequential 68Ga-DOTA-PET/CT scans at rest and during pharmacological stress with simultaneous injection of fluorescent microspheres to validate MBF measurements. Myocardial infarction was induced in 5 additional pigs, which underwent 68Ga-DOTA-PET/CT examinations 7-days after reperfusion. Dynamic PET images were reconstructed and fitted to obtain MBF and ECV parametric maps. RESULTS: MBF assessed with 68Ga-DOTA-PET showed good correlation (y = 0.96x + 0.11, r = 0.91) with that measured with microspheres. MBF values obtained with 68Ga-DOTA-PET in the infarcted area (LAD, left anterior descendant) were significantly reduced in comparison to remote ones LCX (left circumflex artery, P < 0.0001) and RCA (right coronary artery, P < 0.0001). ECV increased in the infarcted area (P < 0.0001). CONCLUSION: 68Ga-DOTA-PET allowed non-invasive assessment of MBF and ECV in pigs with myocardial infarction and under rest-stress conditions. This technique could provide wide access to quantitative measurement of both MBF and ECV with PET imaging.


Assuntos
Circulação Coronária/fisiologia , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Infarto do Miocárdio/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais , Autorradiografia , Estudos de Viabilidade , Feminino , Masculino , Suínos
7.
MAGMA ; 33(6): 865-876, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32410103

RESUMO

OBJECTIVES: To propose and validate a novel imaging sequence that uses a single breath-hold whole-heart 3D T1 saturation recovery compressed SENSE rapid acquisition (SACORA) at 3T. METHODS: The proposed sequence combines flexible saturation time sampling, compressed SENSE, and sharing of saturation pulses between two readouts acquired at different RR intervals. The sequence was compared with a 3D saturation recovery single-shot acquisition (SASHA) implementation with phantom and in vivo experiments (pre and post contrast; 7 pigs) and was validated against the reference inversion recovery spin echo (IR-SE) sequence in phantom experiments. RESULTS: Phantom experiments showed that the T1 maps acquired by 3D SACORA and 3D SASHA agree well with IR-SE. In vivo experiments showed that the pre-contrast and post-contrast T1 maps acquired by 3D SACORA are comparable to the corresponding 3D SASHA maps, despite the shorter acquisition time (15s vs. 188s, for a heart rate of 60 bpm). Mean septal pre-contrast T1 was 1453 ± 44 ms with 3D SACORA and 1460 ± 60 ms with 3D SASHA. Mean septal post-contrast T1 was 824 ± 66 ms and 824 ± 60 ms. CONCLUSION: 3D SACORA acquires 3D T1 maps in 15 heart beats (heart rate, 60 bpm) at 3T. In addition to its short acquisition time, the sequence achieves good T1 estimation precision and accuracy.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Animais , Suspensão da Respiração , Coração/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes , Suínos
8.
Circ Res ; 121(4): 439-450, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28596216

RESUMO

RATIONALE: The impact of cardioprotective strategies and ischemia duration on postischemia/reperfusion (I/R) myocardial tissue composition (edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction) is not well understood. OBJECTIVE: To study the effect of ischemia duration and protective interventions on the temporal dynamics of myocardial tissue composition in a translational animal model of I/R by the use of state-of-the-art imaging technology. METHODS AND RESULTS: Four 5-pig groups underwent different I/R protocols: 40-minute I/R (prolonged ischemia, controls), 20-minute I/R (short-duration ischemia), prolonged ischemia preceded by preconditioning, or prolonged ischemia followed by postconditioning. Serial cardiac magnetic resonance (CMR)-based tissue characterization was done in all pigs at baseline and at 120 minutes, day 1, day 4, and day 7 after I/R. Reference myocardium at risk was assessed by multidetector computed tomography during the index coronary occlusion. After the final CMR, hearts were excised and processed for water content quantification and histology. Five additional healthy pigs were euthanized after baseline CMR as reference. Edema formation followed a bimodal pattern in all 40-minute I/R pigs, regardless of cardioprotective strategy and the degree of intramyocardial hemorrhage or microvascular obstruction. The hyperacute edematous wave was ameliorated only in pigs showing cardioprotection (ie, those undergoing short-duration ischemia or preconditioning). In all groups, CMR-measured edema was barely detectable at 24 hours postreperfusion. The deferred healing-related edematous wave was blunted or absent in pigs undergoing preconditioning or short-duration ischemia, respectively. CMR-measured infarct size declined progressively after reperfusion in all groups. CMR-measured myocardial salvage, and the extent of intramyocardial hemorrhage and microvascular obstruction varied dramatically according to CMR timing, ischemia duration, and cardioprotective strategy. CONCLUSIONS: Cardioprotective therapies, duration of index ischemia, and the interplay between these greatly influence temporal dynamics and extent of tissue composition changes after I/R. Consequently, imaging techniques and protocols for assessing edema, myocardium at risk, infarct size, salvage, intramyocardial hemorrhage, and microvascular obstruction should be standardized accordingly.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/prevenção & controle , Isquemia Miocárdica/fisiopatologia , Reperfusão Miocárdica/métodos , Animais , Masculino , Tomografia Computadorizada Multidetectores/métodos , Infarto do Miocárdio/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Suínos , Fatores de Tempo
9.
Europace ; 21(5): 822-832, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649290

RESUMO

AIMS: Myocardial infarction (MI) alters cardiac fibre organization with unknown consequences on ventricular arrhythmia. We used diffusion tensor imaging (DTI) of three-dimensional (3D) cardiac fibres and scar reconstructions to identify the main parameters associated with ventricular arrhythmia inducibility and ventricular tachycardia (VT) features after MI. METHODS AND RESULTS: Twelve pigs with established MI and three controls underwent invasive electrophysiological characterization of ventricular arrhythmia inducibility and VT features. Animal-specific 3D scar and myocardial fibre distribution were obtained from ex vivo high-resolution contrast-enhanced T1 mapping and DTI sequences. Diffusion tensor imaging-derived parameters significantly different between healthy and scarring myocardium, scar volumes, and left ventricular ejection fraction (LVEF) were included for arrhythmia risk stratification and correlation analyses with VT features. Ventricular fibrillation (VF) was the only inducible arrhythmia in 4 out of 12 infarcted pigs and all controls. Ventricular tachycardia was also inducible in the remaining eight pigs during programmed ventricular stimulation. A DTI-based 3D fibre disorganization index (FDI) showed higher disorganization within dense scar regions of VF-only inducible pigs compared with VT inducible animals (FDI: 0.36; 0.36-0.37 vs. 0.32; 0.26-0.33, respectively, P = 0.0485). Ventricular fibrillation induction required lower programmed stimulation aggressiveness in VF-only inducible pigs than VT inducible and control animals. Neither LVEF nor scar volumes differentiated between VF and VT inducible animals. Re-entrant VT circuits were localized within areas of highly disorganized fibres. Moreover, the FDI within heterogeneous scar regions was associated with the median VT cycle length per animal (R2 = 0.5320). CONCLUSION: The amount of scar-related cardiac fibre disorganization in DTI sequences is a promising approach for ventricular arrhythmia stratification after MI.


Assuntos
Cicatriz , Imagem de Tensor de Difusão/métodos , Coração/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Infarto do Miocárdio/complicações , Miocárdio/patologia , Taquicardia Ventricular , Animais , Cicatriz/diagnóstico por imagem , Cicatriz/patologia , Cicatriz/fisiopatologia , Medição de Risco , Suínos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia
10.
Europace ; 21(1): 163-174, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239689

RESUMO

AIMS: We aimed to study the differences in biventricular scar characterization using bipolar voltage mapping compared with state-of-the-art in vivo delayed gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) imaging and ex vivo T1 mapping. METHODS AND RESULTS: Ten pigs with established myocardial infarction (MI) underwent in vivo scar characterization using LGE-CMR imaging and high-density voltage mapping of both ventricles using a 3.5-mm tip catheter. Ex vivo post-contrast T1 mapping provided a high-resolution reference. Voltage maps were registered onto the left and right ventricular (LV and RV) endocardium, and epicardium of CMR-based geometries to compare voltage-derived scars with surface-projected 3D scars. Voltage-derived scar tissue of the LV endocardium and the epicardium resembled surface projections of 3D in vivo and ex vivo CMR-derived scars using 1-mm of surface projection distance. The thinner wall of the RV was especially sensitive to lower resolution in vivo LGE-CMR images, in which differences between normalized low bipolar voltage areas and CMR-derived scar areas did not decrease below a median of 8.84% [interquartile range (IQR) (3.58, 12.70%)]. Overall, voltage-derived scars and surface scar projections from in vivo LGE-CMR sequences showed larger normalized scar areas than high-resolution ex vivo images [12.87% (4.59, 27.15%), 18.51% (11.25, 24.61%), and 9.30% (3.84, 19.59%), respectively], despite having used optimized surface projection distances. Importantly, 43.02% (36.54, 48.72%) of voltage-derived scar areas from the LV endocardium were classified as non-enhanced healthy myocardium using ex vivo CMR imaging. CONCLUSION: In vivo LGE-CMR sequences and high-density voltage mapping using a conventional linear catheter fail to provide accurate characterization of post-MI scar, limiting the specificity of voltage-based strategies and imaging-guided procedures.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/diagnóstico , Cicatriz/diagnóstico por imagem , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio/patologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Cicatriz/etiologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Frequência Cardíaca , Masculino , Meglumina/administração & dosagem , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sus scrofa
11.
Circulation ; 136(14): 1288-1300, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28687712

RESUMO

BACKGROUND: Clinical protocols aimed to characterize the post-myocardial infarction (MI) heart by cardiac magnetic resonance (CMR) need to be standardized to take account of dynamic biological phenomena evolving early after the index ischemic event. Here, we evaluated the time course of edema reaction in patients with ST-segment-elevation MI by CMR and assessed its implications for myocardium-at-risk (MaR) quantification both in patients and in a large-animal model. METHODS: A total of 16 patients with anterior ST-segment-elevation MI successfully treated by primary angioplasty and 16 matched controls were prospectively recruited. In total, 94 clinical CMR examinations were performed: patients with ST-segment-elevation MI were serially scanned (within the first 3 hours after reperfusion and at 1, 4, 7, and 40 days), and controls were scanned only once. T2 relaxation time in the myocardium (T2 mapping) and the extent of edema on T2-weighted short-tau triple inversion-recovery (ie, CMR-MaR) were evaluated at all time points. In the experimental study, 20 pigs underwent 40-minute ischemia/reperfusion followed by serial CMR examinations at 120 minutes and 1, 4, and 7 days after reperfusion. Reference MaR was assessed by contrast-multidetector computed tomography during the index coronary occlusion. Generalized linear mixed models were used to take account of repeated measurements. RESULTS: In humans, T2 relaxation time in the ischemic myocardium declines significantly from early after reperfusion to 24 hours, and then increases up to day 4, reaching a plateau from which it decreases from day 7. Consequently, edema extent measured by T2-weighted short-tau triple inversion-recovery (CMR-MaR) varied with the timing of the CMR examination. These findings were confirmed in the experimental model by showing that only CMR-MaR values for day 4 and day 7 postreperfusion, coinciding with the deferred edema wave, were similar to values measured by reference contrast-multidetector computed tomography. CONCLUSIONS: Post-MI edema in patients follows a bimodal pattern that affects CMR estimates of MaR. Dynamic changes in post-ST-segment-elevation MI edema highlight the need for standardization of CMR timing to retrospectively delineate MaR and quantify myocardial salvage. According to the present clinical and experimental data, a time window between days 4 and 7 post-MI seems a good compromise solution for standardization. Further studies are needed to study the effect of other factors on these variables.


Assuntos
Edema/etiologia , Coração/fisiopatologia , Infarto do Miocárdio/diagnóstico , Animais , Edema/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Fatores de Risco , Suínos
12.
Basic Res Cardiol ; 112(2): 17, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28188434

RESUMO

Reperfusion, despite being required for myocardial salvage, is associated with additional injury. We hypothesize that infarct size (IS) will be reduced by a period of bloodless reperfusion with hemoglobin-based oxygen carriers (HBOC) before blood-flow restoration. In the pig model, we first characterized the impact of intracoronary perfusion with a fixed volume (600 ml) of a pre-oxygenated acellular HBOC, HBOC-201, on the healthy myocardium. HBOC-201 was administered through the lumen of the angioplasty balloon (i.e., distal to the occlusion site) immediately after onset of coronary occlusion at 1, 0.7, 0.4, or 0.2 ml/kg/min for 12, 17, 30, and 60 min, respectively, followed by blood-flow restoration. Outcome measures were systemic hemodynamics and LV performance assessed by the state-of-the-art cardiac magnetic resonance (CMR) imaging. The best performing HBOC-201 perfusion strategies were then tested for their impact on LV performance during myocardial infarction, in pigs subjected to 45 min mid-left anterior descending (LAD) coronary occlusion. At the end of the ischemia duration, pigs were randomized to regular reperfusion (blood-only reperfusion) vs. bloodless reperfusion (perfusion with pre-oxygenated HBOC-201 distal to the occlusion site), followed by blood-flow restoration. Hemodynamics and CMR-measured LV performance were assessed at 7- and 45-day follow-up. In modifications of the HBOC-201 procedure, glucose and insulin were included to support cardiac metabolism. A total of 66 pigs were included in this study. Twenty healthy pigs (5 per infusion protocol) were used in the study of healthy myocardium. Intracoronary administration of HBOC-201 (600 ml) at varying rates, including a flow of 0.4 ml/kg/min (corresponding to a maximum perfusion time of 30 min), did not damage the healthy myocardium. Slower perfusion (longer infusion time) was associated with permanent LV dysfunction and myocardial necrosis. A total of 46 pigs underwent MI induction. Compared with regular reperfusion, bloodless reperfusion with pre-oxygenated HBOC-201 alone increased IS. This effect was reversed by enrichment of pre-oxygenated HBOC-201 solution with glucose and insulin, resulting in no increase in IS or worsening of long-term ventricular function despite further delaying restoration of blood flow in the LAD. Bloodless reperfusion with a pre-oxygenated HBOC-201 solution supplemented with glucose and insulin is feasible and safe, but did not reduce infarct size. This strategy could be, however, used to deliver agents to the myocardium to treat or prevent ischemia/reperfusion injury before blood-flow restoration.


Assuntos
Hemodinâmica/efeitos dos fármacos , Hemoglobinas/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica/métodos , Animais , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Infarto do Miocárdio/complicações , Distribuição Aleatória , Suínos
13.
J Cardiovasc Magn Reson ; 17: 92, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538198

RESUMO

BACKGROUND: Several T2-mapping sequences have been recently proposed to quantify myocardial edema by providing T2 relaxation time values. However, no T2-mapping sequence has ever been validated against actual myocardial water content for edema detection. In addition, these T2-mapping sequences are either time-consuming or require specialized software for data acquisition and/or post-processing, factors impeding their routine clinical use. Our objective was to obtain in vivo validation of a sequence for fast and accurate myocardial T2-mapping (T2 gradient-spin-echo [GraSE]) that can be easily integrated in routine protocols. METHODS: The study population comprised 25 pigs. Closed-chest 40 min ischemia/reperfusion was performed in 20 pigs. Pigs were sacrificed at 120 min (n = 5), 24 h (n = 5), 4 days (n = 5) and 7 days (n = 5) after reperfusion, and heart tissue extracted for quantification of myocardial water content. For the evaluation of T2 relaxation time, cardiovascular magnetic resonance (CMR) scans, including T2 turbo-spin-echo (T2-TSE, reference standard) mapping and T2-GraSE mapping, were performed at baseline and at every follow-up until sacrifice. Five additional pigs were sacrificed after baseline CMR study and served as controls. RESULTS: Acquisition of T2-GraSE mapping was significantly (3-fold) faster than conventional T2-TSE mapping. Myocardial T2 relaxation measurements performed by T2-TSE and T2-GraSE mapping demonstrated an almost perfect correlation (R(2) = 0.99) and agreement with no systematic error between techniques. The two T2-mapping sequences showed similarly good correlations with myocardial water content: R(2) = 0.75 and R(2) = 0.73 for T2-TSE and T2-GraSE mapping, respectively. CONCLUSIONS: We present the first in vivo validation of T2-mapping to assess myocardial edema. Given its shorter acquisition time and no requirement for specific software for data acquisition or post-processing, fast T2-GraSE mapping of the myocardium offers an attractive alternative to current CMR sequences for T2 quantification.


Assuntos
Edema Cardíaco/patologia , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Animais , Água Corporal/metabolismo , Modelos Animais de Doenças , Edema Cardíaco/metabolismo , Interpretação de Imagem Assistida por Computador , Masculino , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Suínos , Fatores de Tempo
14.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-39068988

RESUMO

Interest in the right ventricle has substantially increased due to advances in knowledge of its pathophysiology and prognostic implications across a wide spectrum of diseases. However, we are still far from understanding the multiple mechanisms that influence right ventricular dysfunction, its evaluation continues to be challenging, and there is a shortage of specific treatments in most scenarios. This review article aims to update knowledge about the physiology of the right ventricle, its transition to dysfunction, diagnostic tools, and available treatments from a translational perspective.

15.
JACC CardioOncol ; 6(2): 217-232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38774018

RESUMO

Background: Anthracycline-induced cardiotoxicity (AIC) debilitates quality of life in cancer survivors. Serial characterizations are lacking of the molecular processes occurring with AIC. Objectives: The aim of this study was to characterize AIC progression in a mouse model from early (subclinical) to advanced heart failure stages, with an emphasis on cardiac metabolism and mitochondrial structure and function. Methods: CD1 mice received 5 weekly intraperitoneal doxorubicin injections (5 mg/kg) and were followed by serial echocardiography for 15 weeks. At 1, 9, and 15 weeks after the doxorubicin injections, mice underwent fluorodeoxyglucose positron emission tomography, and hearts were extracted for microscopy and molecular analysis. Results: Cardiac atrophy was evident at 1 week post-doxorubicin (left ventricular [LV] mass 117 ± 26 mg vs 97 ± 25 mg at baseline and 1 week, respectively; P < 0.001). Cardiac mass nadir was observed at week 3 post-doxorubicin (79 ± 16 mg; P = 0.002 vs baseline), remaining unchanged thereafter. Histology confirmed significantly reduced cardiomyocyte area (167 ± 19 µm2 in doxorubicin-treated mice vs 211 ± 26 µm2 in controls; P = 0.004). LV ejection fraction declined from week 6 post-doxorubicin (49% ± 9% vs 61% ± 9% at baseline; P < 0.001) until the end of follow-up at 15 weeks (43% ± 8%; P < 0.001 vs baseline). At 1 week post-doxorubicin, when LV ejection fraction remained normal, reduced cardiac metabolism was evident from down-regulated markers of fatty acid oxidation and glycolysis. Metabolic impairment continued to the end of follow-up in parallel with reduced mitochondrial adenosine triphosphate production. A transient early up-regulation of nutrient-sensing and mitophagy markers were observed, which was associated with mitochondrial enlargement. Later stages, when mitophagy was exhausted, were characterized by overt mitochondrial fragmentation. Conclusions: Cardiac atrophy, global hypometabolism, early transient-enhanced mitophagy, biogenesis, and nutrient sensing constitute candidate targets for AIC prevention.

16.
Antioxidants (Basel) ; 13(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247530

RESUMO

While reperfusion, or restoration of coronary blood flow in acute myocardial infarction, is a requisite for myocardial salvage, it can paradoxically induce a specific damage known as ischemia/reperfusion (I/R) injury. Our understanding of the precise pathophysiological molecular alterations leading to I/R remains limited. In this study, we conducted a comprehensive and unbiased time-course analysis of post-translational modifications (PTMs) in the post-reperfused myocardium of two different animal models (pig and mouse) and evaluated the effect of two different cardioprotective therapies (ischemic preconditioning and neutrophil depletion). In pigs, a first wave of irreversible oxidative damage was observed at the earliest reperfusion time (20 min), impacting proteins essential for cardiac contraction. A second wave, characterized by irreversible oxidation on different residues and reversible Cys oxidation, occurred at late stages (6-12 h), affecting mitochondrial, sarcomere, and inflammation-related proteins. Ischemic preconditioning mitigated the I/R damage caused by the late oxidative wave. In the mouse model, the two-phase pattern of oxidative damage was replicated, and neutrophil depletion mitigated the late wave of I/R-related damage by preventing both Cys reversible oxidation and irreversible oxidation. Altogether, these data identify protein PTMs occurring late after reperfusion as an actionable therapeutic target to reduce the impact of I/R injury.

17.
ESC Heart Fail ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39233619

RESUMO

AIMS: Dynamic alterations in cardiac DNA methylation have been implicated in the development of heart failure (HF) with evidence of ischaemic heart disease (IHD); however, there is limited research into cell specific, DNA methylation sensitive genes that are affected by dysregulated DNA methylation patterns. In this study, we aimed to identify DNA methylation sensitive genes in the ischaemic heart and elucidate their role in cardiac fibrosis. METHODS: A multi-omics integrative analysis was carried out on RNA sequencing and methylation sequencing on HF with IHD (n = 9) versus non-failing (n = 9) left ventricular tissue, which identified Integrin beta-like 1 (ITGBL1) as a gene of interest. Expression of Itgbl1 was assessed in three animal models of HF; an ischaemia-reperfusion pig model, a myocardial infarction mouse model and an angiotensin-II infused mouse model. Single nuclei RNA sequencing was carried out on heart tissue from angiotensin-II infused mice to establish the expression profile of Itgbl1 across cardiac cell populations. Subsequent in vitro analyses were conducted to elucidate a role for ITGBL1 in human cardiac fibroblasts. DNA pyrosequencing was applied to assess ITGBL1 CpG methylation status in genomic DNA from human cardiac tissue and stimulated cardiac fibroblasts. RESULTS: ITGBL1 was >2-fold up-regulated (FDR adj P = 0.03) and >10-fold hypomethylated (FDR adj P = 0.01) in human HF with IHD left ventricular tissue compared with non-failing controls. Expression of Itgbl1 was up-regulated in three isolated animal models of HF and showed conserved correlation between increased Itgbl1 and diastolic dysfunction. Single nuclei RNA sequencing highlighted that Itgbl1 is primarily expressed in cardiac fibroblasts, while functional studies elucidated a role for ITGBL1 in cardiac fibroblast migration, evident in 50% reduced 24 h fibroblast wound closure occurring subsequent to siRNA-targeted ITGBL1 knockdown. Lastly, evidence provided from DNA pyrosequencing supports the theory that differential expression of ITGBL1 is caused by DNA hypomethylation. CONCLUSIONS: ITGBL1 is a gene that is mainly expressed in fibroblasts, plays an important role in cardiac fibroblast migration, and whose expression is significantly increased in the failing heart. The mechanism by which increased ITGBL1 occurs is through DNA hypomethylation.

18.
JACC CardioOncol ; 5(6): 715-731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205010

RESUMO

Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.

19.
Front Vet Sci ; 9: 919454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353254

RESUMO

Large animal models of acute myocardial infarction (AMI) play a crucial role in translating novel therapeutic approaches to patients as denoted by their use in the right-before-human testing platform. At present, the porcine model of AMI is used most frequently as it mimics the human condition and its anatomopathological features accurately. We want to describe to, and share with, the translational research community our experience of how different anaesthetic protocols (sevoflurane, midazolam, ketamine+xylazine+midazolam, and propofol) and pig breeds [Large White and Landrace x Large White (LLW)] can dramatically modify the outcomes of a well-established porcine model of closed-chest AMI. Our group has extensive experience with the porcine model of reperfused AMI and, over time, we reduced the time of ischaemia used to induce the disease from 90 to 50 min to increase the salvageable myocardium for cardioprotection studies. For logistical reasons, we changed both the anaesthetic protocol and the pig breed used, but these resulted in a dramatic reduction in the size of the myocardial infarct, to almost zero in some cases (sevoflurane, 50-min ischaemia, LLW, 2.4 ± 3.9% infarct size), and the cardiac function was preserved. Therefore, we had to re-validate the model by returning to 90 min of ischaemia. Here, we report the differences in infarct size and cardiac function, measured by different modalities, for each combination of anaesthetic protocol and pig breed we have used. Furthermore, we discuss these combinations and the limited literature pertaining to how these two factors influence cardiac function and infarct size in the porcine model of AMI.

20.
Cardiovasc Res ; 118(2): 531-541, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33605403

RESUMO

AIMS: The aim of this study was to study changes in coronary microcirculation status during and after several cycles of anthracycline treatment. METHODS AND RESULTS: Large-white male pigs (n=40) were included in different experimental protocols (ExPr.) according to anthracycline cumulative exposure [0.45 mg/kg intracoronary (IC) doxorubicin per injection] and follow-up: control (no doxorubicin); single injection and sacrifice either at 48 h (ExPr. 1) or 2 weeks (ExPr. 2); 3 injections 2 weeks apart (low cumulative dose) and sacrifice either 2 weeks (ExPr. 3) or 12 weeks (ExPr. 4) after third injection; five injections 2 weeks apart (high cumulative dose) and sacrifice 8 weeks after fifth injection (ExPr. 5). All groups were assessed by serial cardiac magnetic resonance (CMR) to quantify perfusion and invasive measurement of coronary flow reserve (CFR). At the end of each protocol, animals were sacrificed for ex vivo analyses. Vascular function was further evaluated by myography in explanted coronary arteries of pigs undergoing ExPr. 3 and controls. A single doxorubicin injection had no impact on microcirculation status, excluding a direct chemical toxicity. A series of five fortnightly doxorubicin injections (high cumulative dose) triggered a progressive decline in microcirculation status, evidenced by reduced CMR-based myocardial perfusion and CFR-measured impaired functional microcirculation. In the high cumulative dose regime (ExPr. 5), microcirculation changes appeared long before any contractile defect became apparent. Low cumulative doxorubicin dose (three bi-weekly injections) was not associated with any contractile defect across long-term follow-up, but provoked persistent microcirculation damage, evident soon after third dose injection. Histological and myograph evaluations confirmed structural damage to arteries of all calibres even in animals undergoing low cumulative dose regimes. Conversely, arteriole damage and capillary bed alteration occurred only after high cumulative dose regime. CONCLUSION: Serial in vivo evaluations of microcirculation status using state-of-the-art CMR and invasive CFR show that anthracyclines treatment is associated with progressive and irreversible damage to the microcirculation. This long-persisting damage is present even in low cumulative dose regimes, which are not associated with cardiac contractile deficits. Microcirculation damage might explain some of the increased incidence of cardiovascular events in cancer survivors who received anthracyclines without showing cardiac contractile defects.


Assuntos
Circulação Coronária , Vasos Coronários/fisiopatologia , Cardiopatias/fisiopatologia , Microcirculação , Microvasos/fisiopatologia , Animais , Antibióticos Antineoplásicos , Cardiotoxicidade , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/diagnóstico por imagem , Cardiopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Microvasos/diagnóstico por imagem , Microvasos/patologia , Imagem de Perfusão do Miocárdio , Sus scrofa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA