Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 16(7): 4266-73, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27224678

RESUMO

Semiconductor-metal hybrid nanoparticles manifest efficient light-induced spatial charge separation at the semiconductor-metal interface, as demonstrated by their use for hydrogen generation via water splitting. Here, we pioneer a study of their functionality as efficient photocatalysts for the formation of reactive oxygen species. We observed enhanced photocatalytic activity forming hydrogen peroxide, superoxide, and hydroxyl radicals upon light excitation, which was significantly larger than that of the semiconductor nanocrystals, attributed to the charge separation and the catalytic function of the metal tip. We used this photocatalytic functionality for modulating the enzymatic activity of horseradish peroxidase as a model system, demonstrating the potential use of hybrid nanoparticles as active agents for controlling biological processes through illumination. The capability to produce reactive oxygen species by illumination on-demand enhances the available peroxidase-based tools for research and opens the path for studying biological processes at high spatiotemporal resolution, laying the foundation for developing novel therapeutic approaches.


Assuntos
Luz , Nanopartículas Metálicas , Espécies Reativas de Oxigênio/química , Semicondutores , Fenômenos Biológicos , Peroxidase do Rábano Silvestre/química
2.
Small ; 12(19): 2588-94, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27031048

RESUMO

A synthetic route to prepare metal-semiconductor hybrid nanoparticles is presented, along with the possibility to tune the ratio of primary to secondary nucleation and the morphology of the semiconductor material grown on the metal nanoparticle seeds. Gold and cobalt-platinum nanoparticles are employed as metal seeds, on which CdS or CdSe is grown. Using transmission electron microscopy, absorption spectroscopy (UV-vis), and powder X-ray diffraction as characterization techniques, a significant influence of chloride ions on the type of nucleation (that is, secondary or primary nucleation) as well as on the shape of the resulting heterostructures is observed. Partially replacing the commonly used cadmium precursor CdO by varying amounts of CdCl2 opens access to rod-like, multiarmed, flower-like, and bullet-like structures. The results suggest that neither pure CdO nor pure CdCl2 as precursors but only a mixture of both make these structures obtainable. In this article, the influence of the chloride ion concentration during semiconductor growth on metal seeds is investigated in depth. The morphology of the resulting heterostructures is characterized carefully, and a growth mechanism is suggested. Furthermore, it is shown that this synthetic approach can be transferred to seeds of various metals such as platinum, gold, and cobalt platinum.

3.
Adv Mater ; 31(18): e1900684, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908709

RESUMO

Quantum-confined Au nanoclusters exhibit molecule-like properties, including atomic precision and discrete energy levels. The electrical conductivity of Au nanocluster films can vary by several orders of magnitude and is determined by the strength of the electronic coupling between the individual nanoclusters in the film. Similar to quantum-confined, semiconducting quantum dots, the electrical coupling in films is dependent on the size and structure of the Au core and the length and conjugation of the organic ligands surrounding it. Unlike quantum dots, however, semiconducting transport has not been reported in Au nanocluster films. Here, it is demonstrated that through a simple yet careful choice of cluster size and organic ligands, stable Au nanocluster films can electronically couple and become semiconducting, exhibiting electric field effect and photoconductivity. The molecule-like nature of the Au nanoclusters is evidenced by a hopping transport mechanism reminiscent of doped, disordered organic semiconductor films. These results demonstrate the potential of metal nanoclusters as a solution-processed material for semiconducting devices.

4.
Nanoscale ; 11(4): 1988-1994, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644932

RESUMO

Colloidal approaches allow for the synthesis of Au nanoclusters (NCs) with atomic precision and sizes ranging from a few to hundreds of atoms. In most of the cases, these processes involve a common strategy of thiol etching of initially polydisperse Au nanoparticles into atomically precise NCs, resulting in the release of Au-thiolate complexes as byproducts. To the best of our knowledge, neither the removal of these byproducts nor the mass spectra in the relevant mass region were shown in previous studies. A thorough analysis of inorganic byproducts in the synthesis of [Au25(PPh3)10(PET)5X2]2+ NC, abbreviated as Au25 NC, reveals that published protocols lead to Au25 NCs in vanishingly small quantities compared to their byproducts. Three purification methods are presented to separate byproducts from the desired Au25 NCs which are proposed to be applicable to other promising Au NC systems. Additionally, critical factors for a successful synthesis of Au25 NCs are identified and discussed including the role of residual water. An important finding is that the etching duration is very critical and must be monitored by UV-Vis spectroscopy resulting in synthetic yields as high as 40%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA