Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Inform ; 142: 104394, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209976

RESUMO

The Biomedical Research field is currently advancing to develop Clinical Trials and translational projects based on Real World Evidence. To make this transition feasible, clinical centers need to work toward Data Accessibility and Interoperability. This task is particularly challenging when applied to Genomics, that entered in routinary screening in the last years via mostly amplicon-based Next-Generation Sequencing panels. Said experiments produce up to hundreds of features per patient, and their summarized results are often stored in static clinical reports, making critical information inaccessible to automated access and Federated Search consortia. In this study, we present a reanalysis of 4620 solid tumor sequencing samples in five different histology settings. Furthermore, we describe all the Bioinformatics and Data Engineering processes that were put in place in order to create a Somatic Variant Registry able to deal with the large biotechnological variability of routinary Genomics Profiling.


Assuntos
Pesquisa Biomédica , Neoplasias , Humanos , Genômica , Biologia Computacional/métodos , Sistema de Registros , Neoplasias/diagnóstico , Neoplasias/genética
2.
EMBO Rep ; 21(11): e50078, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32909687

RESUMO

The dynamic interplay between cancer cells and cancer-associated fibroblasts (CAFs) is regulated by multiple signaling pathways, which can lead to cancer progression and therapy resistance. We have previously demonstrated that hMENA, a member of the actin regulatory protein of Ena/VASP family, and its tissue-specific isoforms influence a number of intracellular signaling pathways related to cancer progression. Here, we report a novel function of hMENA/hMENAΔv6 isoforms in tumor-promoting CAFs and in the modulation of pro-tumoral cancer cell/CAF crosstalk via GAS6/AXL axis regulation. LC-MS/MS proteomic analysis reveals that CAFs that overexpress hMENAΔv6 secrete the AXL ligand GAS6, favoring the invasiveness of AXL-expressing pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC) cells. Reciprocally, hMENA/hMENAΔv6 regulates AXL expression in tumor cells, thus sustaining GAS6-AXL axis, reported as crucial in EMT, immune evasion, and drug resistance. Clinically, we found that a high hMENA/GAS6/AXL gene expression signature is associated with a poor prognosis in PDAC and NSCLC. We propose that hMENA contributes to cancer progression through paracrine tumor-stroma crosstalk, with far-reaching prognostic and therapeutic implications for NSCLC and PDAC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Pancreáticas , Actinas , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cromatografia Líquida , Humanos , Neoplasias Pulmonares/genética , Proteínas dos Microfilamentos , Neoplasias Pancreáticas/genética , Proteômica , Células Estromais , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917181

RESUMO

The treatment and management of patients with metastatic melanoma have evolved considerably in the "era" of personalized medicine. Melanoma was one of the first solid tumors to benefit from immunotherapy; life expectancy for patients in advanced stage of disease has improved. However, many progresses have yet to be made considering the (still) high number of patients who do not respond to therapies or who suffer adverse events. In this scenario, precision medicine appears fundamental to direct the most appropriate treatment to the single patient and to guide towards treatment decisions. The recent multi-omics analyses (genomics, transcriptomics, proteomics, metabolomics, radiomics, etc.) and the technological evolution of data interpretation have allowed to identify and understand several processes underlying the biology of cancer; therefore, improving the tumor clinical management. Specifically, these approaches have identified new pharmacological targets and potential biomarkers used to predict the response or adverse events to treatments. In this review, we will analyze and describe the most important omics approaches, by evaluating the methodological aspects and progress in melanoma precision medicine.


Assuntos
Melanoma/diagnóstico , Melanoma/terapia , Medicina de Precisão , Biomarcadores , Biópsia , Tomada de Decisão Clínica , Gerenciamento Clínico , Suscetibilidade a Doenças , Genômica/métodos , Humanos , Imunoterapia , Biópsia Líquida , Melanoma/etiologia , Metabolômica/métodos , Avaliação de Resultados da Assistência ao Paciente , Medicina de Precisão/métodos , Proteômica/métodos
4.
Breast Cancer Res ; 20(1): 59, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921315

RESUMO

BACKGROUND: As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. METHODS: We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. RESULTS: We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. CONCLUSIONS: These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas Inibidoras de Diferenciação/genética , Neovascularização Patológica/genética , Neoplasias de Mama Triplo Negativas/genética , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reprogramação Celular/genética , Citocinas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Interleucina-8/genética , Macrófagos/patologia , MicroRNAs/genética , Neovascularização Patológica/patologia , Neoplasias de Mama Triplo Negativas/patologia , Fator A de Crescimento do Endotélio Vascular/genética
5.
J Transl Med ; 16(1): 22, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402328

RESUMO

BACKGROUND: An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. METHODS: In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). RESULTS: We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZpos/WNTmut) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZpos/WNTmut signature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZpos/WNTmut signature negatively impacted overall survival. CONCLUSIONS: Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be active in GC, conferring chemoresistant traits that translate into adverse survival outcomes.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Via de Sinalização Wnt/genética , Idoso , Biomarcadores Tumorais/metabolismo , Feminino , Via de Sinalização Hippo , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Análise de Sobrevida , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Resultado do Tratamento
6.
J Transl Med ; 16(1): 247, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180862

RESUMO

We have previously reported that nuclear expression of the Hippo transducer TAZ in association with Wnt pathway mutations negatively impacts survival outcomes in advanced gastric cancer (GC) patients. Here, we extended these previous findings by investigating another oncogenic cooperation, namely, the interplay between YAP, the TAZ paralogue, and p53. The molecular output of the YAP-p53 cooperation is dependent on TP53 mutational status. In the absence of mutations, the YAP-p53 crosstalk elicits a pro-apoptotic response, whereas in the presence of TP53 mutations it activates a pro-proliferative transcriptional program. In order to study this phenomenon, we re-analyzed data from 83 advanced GC patients treated with chemotherapy whose tissue samples had been characterized for YAP expression (immunohistochemistry, IHC) and TP53 mutations (deep sequencing). In doing so, we generated a molecular model combining nuclear YAP expression in association with TP53 missense variants (YAP+/TP53mut(mv)). Surprisingly, this signature was associated with a decreased risk of disease progression (multivariate Cox for progression-free survival: HR 0.53, 95% CI 0.30-0.91, p = 0.022). The YAP+/TP53mut(mv) model was also associated with better OS in the subgroup of patients who received chemotherapy beyond the first-line setting (multivariate Cox: HR 0.36, 95% CI 0.16-0.81, p = 0.013). Collectively, our findings suggest that the oncogenic cooperation between YAP and mutant p53 may translate into better survival outcomes. This apparent paradox can be explained by the pro-proliferative program triggered by YAP and mutant p53, that supposedly renders cancer cells more vulnerable to cytotoxic therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação de Sentido Incorreto , Fosfoproteínas/genética , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p53/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Antineoplásicos/uso terapêutico , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fosfoproteínas/metabolismo , Modelos de Riscos Proporcionais , Análise de Regressão , Neoplasias Gástricas/mortalidade , Fatores de Transcrição , Resultado do Tratamento , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
7.
Mol Cancer ; 16(1): 88, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28486946

RESUMO

BACKGROUND: Thymoma and thymic carcinoma are the most frequent subtypes of thymic epithelial tumors (TETs). A relevant advance in TET management could derive from a deeper molecular characterization of these neoplasms. We previously identified a set of microRNA (miRNAs) differentially expressed in TETs and normal thymic tissues and among the most significantly deregulated we described the down-regulation of miR-145-5p in TET. Here we describe the mRNAs diversely regulated in TETs and analyze the correlation between these and the miRNAs previously identified, focusing in particular on miR-145-5p. Then, we examine the functional role of miR-145-5p in TETs and its epigenetic transcriptional regulation. METHODS: mRNAs expression profiling of a cohort of fresh frozen TETs and normal tissues was performed by microarray analysis. MiR-145-5p role in TETs was evaluated in vitro, modulating its expression in a Thymic Carcinoma (TC1889) cell line. Epigenetic transcriptional regulation of miR-145-5p was examined by treating the TC1889 cell line with the HDAC inhibitor Valproic Acid (VPA). RESULTS: Starting from the identification of a 69-gene signature of miR-145-5p putative target mRNAs, whose expression was inversely correlated to that of miR-145-5p, we followed the expression of some of them in vitro upon overexpression of miR-145-5p; we observed that this resulted in the down-regulation of the target genes, impacting on TETs cancerous phenotype. We also found that VPA treatment of TC1889 cells led to miR-145-5p up-regulation and concomitant down-regulation of miR-145-5p target genes and exhibited antitumor effects, as indicated by the induction of cell cycle arrest and by the reduction of cell viability, colony forming ability and migration capability. The importance of miR-145-5p up-regulation mediated by VPA is evidenced by the fact that hampering miR-145-5p activity by a LNA inhibitor reduced the impact of VPA treatment on cell viability and colony forming ability of TET cells. Finally, we observed that VPA was also able to enhance the response of TET cells to cisplatin and erlotinib. CONCLUSIONS: Altogether our results suggest that the epigenetic regulation of miR-145-5p expression, as well as the modulation of its functional targets, could be relevant players in tumor progression and treatment response in TETs.


Assuntos
Epigênese Genética , MicroRNAs/genética , Neoplasias Epiteliais e Glandulares/genética , Timoma/genética , Neoplasias do Timo/genética , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloridrato de Erlotinib/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/patologia , RNA Mensageiro/genética , Timoma/tratamento farmacológico , Timoma/patologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/patologia
8.
Int J Cancer ; 140(11): 2587-2595, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28233295

RESUMO

The DNA damage response (DDR) network is exploited by cancer cells to withstand chemotherapy. Gastric cancer (GC) carries deregulation of the DDR and harbors genetic defects that fuel its activation. The ATM-Chk2 and ATR-Chk1-Wee1 axes are deputed to initiate DNA repair. Overactivation of these pathways in cancer cells may represent an adaptive response for compensating genetic defects deregulating G1 -S transition (e.g., TP53) and ATM/ATR-initiated DNA repair (e.g., ARID1A). We hypothesized that DDR-linked biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Immunohistochemical assessment of DDR kinases (pATM, pChk2, pChk1 and pWee1) and DNA damage markers (γ-H2AX and pRPA32) was performed in biological samples from 110 advanced GC patients treated with first-line chemotherapy, either in phase II trials or in routine clinical practice. In 90 patients, this characterization was integrated with targeted ultra-deep sequencing for evaluating the mutational status of TP53 and ARID1A. We recorded a positive association between the investigated biomarkers. The combination of two biomarkers (γ-H2AXhigh /pATMhigh ) was an adverse factor for both progression-free survival (multivariate Cox: HR 2.23, 95%CI: 1.47-3.40) and overall survival (multivariate Cox: HR: 2.07, 95%CI: 1.20-3.58). The relationship between the γ-H2AXhigh /pATMhigh model and progression-free survival was consistent across the different TP53 backgrounds and was maintained in the ARID1A wild-type setting. Conversely, this association was no longer observed in an ARID1A-mutated subgroup. The γ-H2AXhigh /pATMhigh model negatively impacted survival outcomes in GC patients treated with chemotherapy. The mutational status of ARID1A, but apparently not TP53 mutations, affects its predictive significance.


Assuntos
Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Idoso , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Intervalo Livre de Doença , Feminino , Mucosa Gástrica/metabolismo , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estômago/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
9.
Future Oncol ; 10(13): 2033-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25396775

RESUMO

Overcoming resistance to standard anticancer treatments represents a significant challenge. The interest regarding cancer stem cells, a cellular population that has the ability to self-renew and to propagate the tumor, was prompted by experimental evidence delineating the molecular mechanisms that are selectively activated in this cellular subset in order to survive chemotherapy. This has also stimulated combination strategies aimed at rendering cancer stem cells vulnerable to anticancer agents. Moreover, cancer stem cells offer a unique opportunity for modeling human cancers in mice, thus emerging as a powerful tool for testing novel drugs and combinations in a simulation of human disease. These novel animal models may lay the foundation for a new generation of clinical trials aimed at anticipating the benefit to patients of anticancer therapies.


Assuntos
Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/terapia , Tolerância a Radiação , Transdução de Sinais , Falha de Tratamento , Resultado do Tratamento
10.
Cell Death Dis ; 15(2): 113, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321003

RESUMO

Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin ß3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin ß3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin ß3 axis as a potential target for BC treatment.


Assuntos
Neoplasias da Mama , Integrina beta3 , Humanos , Feminino , Integrina beta3/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Via de Sinalização Hippo , Fator A de Crescimento do Endotélio Vascular , Proteínas Inibidoras de Diferenciação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA