Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur J Neurosci ; 56(10): 5853-5868, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161393

RESUMO

Attention includes three different functional components: generating and maintaining an alert state (alerting), orienting to sensory events (orienting), and resolving conflicts between alternative actions (executive control). Neuroimaging and patient studies suggest that the posterior parietal cortex (PPC) is involved in all three attention components. Transcranial magnetic stimulation (TMS) has repeatedly been applied over the PPC to study its functional role for shifts and maintenance of visuospatial attention. Most TMS-PPC studies used only detection tasks or orienting paradigms to investigate TMS-PPC effects on attention processes, neglecting the alerting and executive control components of attention. The objective of the present study was to investigate the role of PPC in all three functional components of attention: alerting, orienting, and executive control. To this end, we disrupted PPC with TMS (continuous theta-burst stimulation), to modulate subsequent performance on the Lateralized-Attention Network Test, used to assess the three attention components separately. Our results revealed hemifield-specific effects on alerting and executive control functions, but we did not find stimulation effects on orienting performance. While this field of research and associated clinical development have been predominantly focused on orienting performance, our results suggest that parietal cortex and its modulation may affect other aspects of attention as well.


Assuntos
Função Executiva , Estimulação Magnética Transcraniana , Humanos , Função Executiva/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia
2.
Neuroimage ; 207: 116429, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805381

RESUMO

Visuospatial attention theories often propose hemispheric asymmetries underlying the control of attention. In general support of these theories, previous EEG/MEG studies have shown that spatial attention is associated with hemispheric modulation of posterior alpha power (gating by inhibition). However, since measures of alpha power are typically expressed as lateralization scores, or collapsed across left and right attention shifts, the individual hemispheric contribution to the attentional control mechanism remains unclear. This is, however, the most crucial and decisive aspect in which the currently competing attention theories continue to disagree. To resolve this long-standing conflict, we derived predictions regarding alpha power modulations from Heilman's hemispatial theory and Kinsbourne's interhemispheric competition theory and tested them empirically in an EEG experiment. We used an attention paradigm capable of isolating alpha power modulation in two attentional states, namely attentional bias in a neutral cue condition and spatial orienting following directional cues. Differential alpha modulations were found for both hemispheres across conditions. When anticipating peripheral visual targets without preceding directional cues (neutral condition), posterior alpha power in the left hemisphere was generally lower and more strongly modulated than in the right hemisphere, in line with the interhemispheric competition theory. Intriguingly, however, while alpha power in the right hemisphere was modulated by both, cue-directed leftward and rightward attention shifts, the left hemisphere only showed modulations by rightward shifts of spatial attention, in line with the hemispatial theory. This suggests that the two theories may not be mutually exclusive, but rather apply to different attentional states.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Eletroencefalografia/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Estimulação Luminosa
3.
Clin Neurophysiol Pract ; 8: 32-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632368

RESUMO

Electroencephalography (EEG) is one of the main pillars used for the diagnosis and study of epilepsy, readily employed after a possible first seizure has occurred. The most established biomarker of epilepsy, in case seizures are not recorded, are interictal epileptiform discharges (IEDs). In clinical practice, however, IEDs are not always present and the EEG may appear completely normal despite an underlying epileptic disorder, often leading to difficulties in the diagnosis of the disease. Thus, finding other biomarkers that reliably predict whether an individual suffers from epilepsy even in the absence of evident epileptic activity would be extremely helpful, since they could allow shortening the period of diagnostic uncertainty and consequently decreasing the risk of seizure. To date only a few EEG features other than IEDs seem to be promising candidates able to distinguish between epilepsy, i.e. > 60 % risk of recurrent seizures, or other (pathological) conditions. The aim of this narrative review is to provide an overview of the EEG-based biomarker candidates for epilepsy and the techniques employed for their identification.

4.
iScience ; 25(3): 103962, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35295814

RESUMO

Transcranial magnetic stimulation (TMS) has been applied to frontal eye field (FEF) and intraparietal sulcus (IPS) in isolation, to study their role in attention. However, these nodes closely interact in a "dorsal attention network". Here, we compared effects of inhibitory TMS applied to individually fMRI-localized FEF or IPS (single-node TMS), to effects of simultaneously inhibiting both regions ("network TMS"), and sham. We assessed attention performance using the lateralized attention network test, which captures multiple facets of attention: spatial orienting, alerting, and executive control. TMS showed no effects on alerting and executive control. For spatial orienting, only network TMS showed a reduction of the orienting effect in the right hemifield compared to the left hemifield, irrespective of the order of TMS application (IPS→FEF or FEF→IPS). Network TMS might prevent compensatory mechanisms within a brain network, which is promising for both research and clinical applications to achieve superior neuromodulation effects.

5.
Int J Clin Health Psychol ; 22(3): 100326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990733

RESUMO

Background/Objective: Non-invasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) may help alleviate attention deficits in stroke patients with hemispatial neglect by modulating oscillatory brain activity. We applied high-definition (HD)-tACS at alpha frequency over the contralesional hemisphere to support unilateral oscillatory alpha activity and correct for the pathologically altered attention bias in neglect patients. Methods: We performed a within-subject, placebo-controlled study in which sixteen stroke patients with hemispatial neglect underwent 10 Hz (alpha) as well as sham (placebo) stimulation targeting the contralesional posterior parietal cortex. Attentional bias was measured with a computerized visual detection paradigm and two standard paper-and-pencil neglect tests. Results: We revealed a significant shift of attentional resources after alpha-HD-tACS, but not sham tACS, toward the ipsilateral and thus contralesional hemifield leading to a reduction in neglect symptoms, measured with a computerized visual detection paradigm and a widely used standard paper and pencil neglect tests. Conclusions: We showed a significant alpha-HD-tACS-induced shift of attentional resources toward the contralesional hemifield, thus leading to a reduction in neglect symptoms. Importantly, HD-tACS effects persisted after the stimulation itself had ended. This tACS protocol, based on intrinsic oscillatory processes, may be an effective and well-tolerated treatment option for neglect.

6.
Front Psychol ; 8: 1147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28736543

RESUMO

Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., 'entrainment'). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7-13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences).

7.
Int. j. clin. health psychol. (Internet) ; 22(3): 1-9, Sept. - dec. 2022. ilus, tab, graf
Artigo em Inglês | IBECS (Espanha) | ID: ibc-208428

RESUMO

Background/Objective: Non-invasive brain stimulation techniques such as transcranial alternating current stimulation (tACS) may help alleviate attention deficits in stroke patients with hemispatial neglect by modulating oscillatory brain activity. We applied high-definition (HD)-tACS at alpha frequency over the contralesional hemisphere to support unilateral oscillatory alpha activity and correct for the pathologically altered attention bias in neglect patients.Methods: We performed a within-subject, placebo-controlled study in which sixteen stroke patients with hemispatial neglect underwent 10 Hz (alpha) as well as sham (placebo) stimulation targeting the contralesional posterior parietal cortex. Attentional bias was measured with a computerized visual detection paradigm and two standard paper-and-pencil neglect tests.Results: We revealed a significant shift of attentional resources after alpha-HD-tACS, but not sham tACS, toward the ipsilateral and thus contralesional hemifield leading to a reduction in neglect symptoms, measured with a computerized visual detection paradigm and a widely used standard paper and pencil neglect tests.Conclusions: We showed a significant alpha-HD-tACS-induced shift of attentional resources toward the contralesional hemifield, thus leading to a reduction in neglect symptoms. Importantly, HD-tACS effects persisted after the stimulation itself had ended. This tACS protocol, based on intrinsic oscillatory processes, may be an effective and well-tolerated treatment option for neglect. (AU)


Assuntos
Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Neuropsicologia , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA