Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500613

RESUMO

polypropylene (PP) syntactic foams (SFs) containing hollow glass microspheres (HGMs) possess low density and elevated mechanical properties, which can be tuned according to the specific application. A possible way to improve their multifunctionality could be the incorporation of organic Phase Change Materials (PCMs), widely used for thermal energy storage (TES) applications. In the present work, a PCM constituted by encapsulated paraffin, having a melting temperature of 57 °C, was embedded in a compatibilized polypropylene SF by melt compounding and hot pressing at different relative amounts. The rheological, morphological, thermal, and mechanical properties of the prepared materials were systematically investigated. Rheological properties in the molten state were strongly affected by the introduction of both PCMs and HGMs. As expected, the introduction of HGMs reduced both the foam density and thermal conductivity, while the enthalpy of fusion (representing the TES capability) was proportional to the PCM concentration. The mechanical properties of these foams were improved by the incorporation of HGMs, while they were reduced by addition of PCMs. Therefore, the combination of PCMs and HGMs in a PP matrix generated multifunctional materials with tunable thermo-mechanical properties, with a wide range of applications in the automotive, oil, textile, electronics, and aerospace fields.


Assuntos
Parafina , Polipropilenos , Cápsulas , Temperatura Alta , Condutividade Térmica
2.
Polymers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071697

RESUMO

Syntactic foams (SFs) combining an epoxy resin and hollow glass microspheres (HGM) feature a unique combination of low density, high mechanical properties, and low thermal conductivity which can be tuned according to specific applications. In this work, the versatility of epoxy/HGM SFs was further expanded by adding a microencapsulated phase change material (PCM) providing thermal energy storage (TES) ability at a phase change temperature of 43 °C. At this aim, fifteen epoxy (HGM/PCM) compositions with a total filler content (HGM + PCM) of up to 40 vol% were prepared and characterized. The experimental results were fitted with statistical models, which resulted in ternary diagrams that visually represented the properties of the ternary systems and simplified trend identification. Dynamic rheological tests showed that the PCM increased the viscosity of the epoxy resin more than HGM due to the smaller average size (20 µm vs. 60 µm) and that the systems containing both HGM and PCM showed lower viscosity than those containing only one filler type, due to the higher packing efficiency of bimodal filler distributions. HGM strongly reduced the gravimetric density and the thermal insulation properties. In fact, the sample with 40 vol% of HGM showed a density of 0.735 g/cm3 (-35% than neat epoxy) and a thermal conductivity of 0.12 W/(m∙K) (-40% than neat epoxy). Moreover, the increase in the PCM content increased the specific phase change enthalpy, which was up to 68 J/g for the sample with 40 vol% of PCM, with a consequent improvement in the thermal management ability that was also evidenced by temperature profiling tests in transient heating and cooling regimes. Finally, dynamical mechanical thermal analysis (DMTA) showed that both fillers decreased the storage modulus but generally increased the storage modulus normalized by density (E'/ρ) up to 2440 MPa/(g/cm3) at 25 °C with 40 vol% of HGM (+48% than neat epoxy). These results confirmed that the main asset of these ternary multifunctional syntactic foams is their versatility, as the composition can be tuned to reach the property set that best matches the application requirements in terms of TES ability, thermal insulation, and low density.

3.
Polymers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502936

RESUMO

Epoxy/hollow glass microsphere (HGM) syntactic foams (SFs) are peculiar materials developed to combine low density, low thermal conductivity, and elevated mechanical properties. In this work, multifunctional SFs endowed with both structural and thermal management properties were produced for the first time, by combining an epoxy matrix with HGM and a microencapsulated phase change material (PCM) having a melting temperature of 43 °C. Systems with a total filler content (HGM + PCM) up to 40 vol% were prepared and characterized from the mechanical point of view with a broad experimental campaign comprising quasi-static, impact, and fracture toughness tests. The experimental results were statistically treated and fitted with a linear model, to produce ternary phase diagrams to provide a comprehensive interpretation of the mechanical behaviour of the prepared foams. In quasi-static tests, HGM introduction helps to retain the specific tensile elastic modulus and to increase the specific compressive modulus. The brittle nature of HGMs decreases the Charpy impact properties of the SFs, while the PCM insertion improve their toughness. This result is confirmed in KIC and GIC tests, where the composition with 20 vol% of PCM shows an increase of 80% and 370% in KIC and GIC in to neat epoxy, respectively. The most promising compositions are those combining PCM and HGMs with a total particle volume fraction up to 40 vol%, thanks to their optimal combination of thermal management capability, lightness, thermal insulation, and mechanical properties. The ability to fine-tune the properties of the SFs, together with the acquired thermal energy storage (TES) capability, confirm the great potential of these multifunctional materials in automotive, electronics, and aerospace industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA