RESUMO
Objectives. To quantify past reductions in cold-related mortality attributable to anthropogenic climate change. Methods. We performed a daily time-series regression analysis employing distributed lag nonlinear models of 1 203 981 deaths in Greater London, United Kingdom, in winter months (November-March) during 1976 to 2019. We made attribution assessment by comparing differential cold-related mortality impacts associated with observed temperatures to those using counterfactual temperatures representing no climate change. Results. Over the past decade, the average number of cold days (below 8 °C) per year was 120 in the observed series and 158 in the counterfactual series. Since 1976, we estimate 447 (95% confidence interval = 330, 559) annual cold-related all-cause deaths have been avoided because of milder temperatures associated with climate change. Annually, 241 cardiovascular and 73 respiratory disease deaths have been avoided. Conclusions. Anthropogenic climate change made some contribution to reducing previous cold-related deaths in London; however, cold remains an important public health risk factor. Public Health Implications. Better adaptation to both heat and cold should be promoted in public health measures to protect against climate change. In England, this has been addressed by the development of a new year-round Adverse Weather and Health Plan. (Am J Public Health. 2024;114(4):398-402. https://doi.org/10.2105/AJPH.2023.307552).
Assuntos
Mudança Climática , Temperatura Baixa , Humanos , Londres/epidemiologia , Temperatura , Temperatura Alta , Reino Unido , MortalidadeRESUMO
The Gaza Strip is one of the world's most fragile states and faces substantial public health and development challenges. Climate change is intensifying existing environmental problems, including increased water stress. We provide the first published assessment of climate impacts on diarrhoeal disease in Gaza and project future health burdens under climate change scenarios. Over 1 million acute diarrhoea cases presenting to health facilities during 2009−2020 were linked to weekly temperature and rainfall data and associations assessed using time-series regression analysis employing distributed lag non-linear models (DLNMs). Models were applied to climate projections to estimate future burdens of diarrhoeal disease under 2 °C and 1.5 °C global warming scenarios. There was a significantly raised risk of diarrhoeal disease associated with both mean weekly temperature above 19 °C and total weekly rainfall below 6 mm in children 0−3 years. A heat effect was also present in subjects aged > 3 years. Annual diarrhoea cases attributable to heat and low rainfall was 2209.0 and 4070.3, respectively, in 0−3-year-olds. In both age-groups, heat-related cases could rise by over 10% under a 2 °C global warming level compared to baseline, but would be limited to below 2% under a 1.5 °C scenario. Mean rises of 0.9% and 2.7% in diarrhoea cases associated with reduced rainfall are projected for the 1.5 °C and 2 °C scenarios, respectively, in 0−3-year-olds. Climate change impacts will add to the considerable development challenges already faced by the people of Gaza. Substantial health gains could be achieved if global warming is limited to 1.5 °C.
Assuntos
Mudança Climática , Aquecimento Global , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Diarreia/epidemiologia , Humanos , TemperaturaRESUMO
In this paper, we present an assessment of the sensitivity of groundwater-surface water interactions to climate change in an alluvial aquifer, located in the Ljubljansko polje, Slovenia. The investigation is motivated by a recent assessment of climate change pressures on the water balance in the Sava River Basin (Gampe et al., 2016). The assessment was performed using a comprehensive hydrological modelling approach, which is based on the direct/indirect communication between FEFLOW and WaSiM/MIKE 11. This modelling framework provides a precise simulation of the critical processes in the study domain, which are the main drivers influencing the interactions between precipitation, river water and groundwater under different future climate scenarios. Climate projections were based on the results of the three regional climate models SMHI-RCA4, KNMI-RACMO22E and CLMcom-CCLM4. The results show that there will be higher levels of local precipitation during 2036-2065, the projected river discharge will be larger in the future compared to 2000-2014, and it is unlikely that the Ljubljansko polje will suffer from water scarcity. In addition, amongst the various sections of the Sava River the section between Crnuce and Sentjakob is the one most sensitive to climate change. By running the models under different climate scenarios a deeper insight into aquifer system functioning was obtained. Investigating impacts of climate change on groundwater and interactions between surface water and groundwater on the local scale is a basis for applying such a study on the global scale, which was still not very well investigated.
RESUMO
Global change is severely impacting the biosphere that, through ecosystem services, sustains human well-being. Such impacts are expected to increase unless mitigation management actions are implemented. Despite the call from the scientific and political arenas for their implementation, few studies assess the effectiveness of actions on freshwater-related services. Here, by modeling water provisioning, water purification and erosion control under current and future conditions, we assess future trends of service provision with and without mitigation policies. In particular, two different storylines combine multiple climate, land use/land cover and agricultural management scenarios, and represent a pro-efficiency business as usual (myopic storyline) and a future that considers social and environmental sustainability (sustainable storyline). The mentioned services are modeled for the horizon 2050 and in three South European river basins: Ebro, Adige and Sava, which encompass the wide socio-environmental diversity of the region. Our results indicate that Mediterranean basins (Ebro) are extremely vulnerable to global change respect Alpine (Adige) or Continental (Sava) basins, as the Ebro might experience a decrease in water availability up to 40%, whereas the decrease is of only 2-4% in the Adige or negligible in the Sava. However, Mediterranean basins are also more sensitive to the implementation of mitigation actions, which would compensate the drop in water provisioning. Results also indicate that the regulating services of water purification and erosion control will gain more relevance in the future, as both services increased between 4 and 20% in both global change scenarios as a result of the expansion of agricultural and urban areas. Overall, the impact of global change is diverse among services and across river basins in Southern Europe, with the Mediterranean basins as the most vulnerable and the Continental as the least. The implementation of mitigation actions can compensate the impact and therefore deserves full political attention.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Água Doce , Agricultura , Clima , Mudança Climática , Europa (Continente) , Qualidade da Água , Abastecimento de ÁguaRESUMO
Multiple abiotic stressors affect the ecological status of water bodies. The status of waterbodies in the Ebro catchment (NE Spain) is evaluated using the biological quality elements (BQEs) of diatoms, invertebrates and macrophytes. The multi-stressor influence on the three BQEs was evaluated using the monitoring dataset available from the catchment water authority. Nutrient concentrations, especially total phosphorus (TP), affected most of the analyzed BQEs, while changes in mean discharge, water temperature, or river morphology did not show significant influences. Linear statistical models were used to evaluate the change of water bodies' ecological status under different combinations of future socioeconomic and climate scenarios. Changes in land use, rainfall, water temperature, mean discharge, TP and nitrate concentrations were modeled according to the future scenarios. These revealed an evolution of the abiotic stressors that could lead to a general decrease in the ecosystem quality of water bodies within the Ebro catchment. This deterioration was especially evidenced on the diatoms and invertebrate biological indices, mainly because of the foreseen increase in TP concentrations. Water bodies located in the headwaters were seen as the most sensitive to future changes.
RESUMO
Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity.
RESUMO
In the Mediterranean region, particularly in the Gaza strip, an increased risk of drought is among the major concerns related to climate change. The impacts of climate change on water availability, drought risk and food security can be assessed by means of hydro-climatological modeling. However, the region is prone to severe observation data scarcity, which limits the potential for robust model parameterization, calibration and validation. In this study, the physically based, spatially distributed hydrological model WaSiM is parameterized and evaluated using satellite imagery to assess hydrological quantities. The Triangle Method estimates actual evapotranspiration (ETR) through the Normalized Difference Vegetation Index (NDVI) and land surface temperature (LST) provided by Landsat TM imagery. So-derived spatially distributed evapotranspiration is then used in two ways: first a subset of the imagery is used to parameterize the irrigation module of WaSiM and second, withheld scenes are applied to evaluate the performance of the hydrological model in the data scarce study area. The results show acceptable overall correlation with the validation scenes (r=0.53) and an improvement over the usual irrigation parameterization scheme using land use information exclusively. This model setup is then applied for future drought risk assessment in the Gaza Strip using a small ensemble of four regional climate projections for the period 2041-2070. Hydrological modeling reveals an increased risk of drought, assessed with an evapotranspiration index, compared to the reference period 1971-2000. Current irrigation procedures cannot maintain the agricultural productivity under future conditions without adaptation.