Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 50(2): 733-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277042

RESUMO

Although the involvement of ß-endorphin (ß-ERP) in vertebrate reproduction has been suggested, its role in testicular activity is not clear in fish. We describe the influence of ß-ERP on spermatogenesis in a cichlid fish in the present paper. In comparison to the control group, the administration of ß-ERP (3 µg) caused a significant increase in the number of spermatogonia-A and spermatids. Following treatment with ß-ERP (6 µg), a significant increase in the number of spermatogonia-A was observed, whereas the numbers of all the other germ cells, excluding spermatogonia-B, significantly decreased in comparison to those in the control group. In addition, treatment of fish with 6 µg ß-ERP resulted in a significant reduction in the dimensions of the lumen and seminiferous lobules, the level of immunopositive androgen receptor (AR) expression in Sertoli cells, and the percentage of luteinizing hormone (LH) immunolabeled in the pituitary compared to those in the control group or the group treated with 3 µg ß-ERP. In contrast, the intensity of AR immunoreactivity and the percentage of LH immunolabeling were substantially increased in fish treated with 3 µg ß-ERP compared to those in the control group. These findings reveal for the first time that a low dose of ß-ERP stimulates the recruitment of spermatogonia as well as spermateleosis, whereas a high concentration affects the recruitment of germ cells prior to meiotic division in tilapia. These results suggest that ß-ERP exerts modulatory effects at the testicular and hypophysial levels through alterations in AR expression and LH secretory activity, respectively, in teleosts.


Assuntos
Testículo , Tilápia , Masculino , Animais , Testículo/metabolismo , Tilápia/metabolismo , beta-Endorfina/metabolismo , beta-Endorfina/farmacologia , Peptídeos Opioides/metabolismo , Peptídeos Opioides/farmacologia , Espermatogênese , Hormônio Luteinizante/metabolismo , Espermatogônias
2.
Anim Reprod Sci ; 268: 107550, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38996787

RESUMO

Ghrelin, a peptide found in the brain and gut, is predicted to play a significant role in the control of various physiological systems in fish. The objective of this study was to examine the impact of ipamorelin acetate (IPA), a ghrelin agonist, on the reproductive axis of the tilapia Oreochromis mossambicus. The administration of either 5 or 30 µg of IPA for 21 days led to a significant and dose-dependent rise in food intake concomitant with a significant increase in the numbers of primary spermatocytes, secondary spermatocytes, and early spermatids compared to the control group. There was a significant rise in the number of late spermatids, as well as the areas of the lobule and lumen, in fish treated with 30 µg of IPA, compared to the control group. Moreover, there was no significant difference in the percentage of gonadotropin-releasing hormone (GnRH)-immunoreactive fibres in the hypothalamus and anterior pituitary gland across different groups. However, a significant elevation in the expression of androgen receptor protein was observed in fish treated with 30 µg of IPA. Furthermore, the concentrations of luteinizing hormone (LH) and 11-ketotestosterone (11-KT) in the serum of fish treated with either 5 or 30 µg of IPA were significantly elevated in comparison to the control group. Collectively, these findings suggest that the administration of ghrelin enhances the development of germ cells during the meiosis-I phase and that this effect might be mediated via the stimulation of 11-KT and androgen receptors at the testicular level and LH at the pituitary level in the tilapia.

3.
Brain Struct Funct ; 229(6): 1365-1395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713249

RESUMO

Enkephalins are endogenous opioid pentapeptides that play a role in neurotransmission and pain modulation in vertebrates. However, the distribution pattern of enkephalinergic neurons in the brains of reptiles has been understudied. This study reports the organization of the methionine-enkephalin (M-ENK) and leucine-enkephalin (L-ENK) neuronal systems in the central nervous system of the gecko Hemidactylus frenatus using an immunofluorescence labeling method. Although M-ENK and L-ENK-immunoreactive (ir) fibers extended throughout the pallial and subpallial subdivisions, including the olfactory bulbs, M-ENK and L-ENK-ir cells were found only in the dorsal septal nucleus. Enkephalinergic perikarya and fibers were highly concentrated in the periventricular and lateral preoptic areas, as well as in the anterior and lateral subdivisions of the hypothalamus, while enkephalinergic innervation was observed in the hypothalamic periventricular nucleus, infundibular recess nucleus and median eminence. The dense accumulation of enkephalinergic content was noticed in the pars distalis of the hypophysis. In the thalamus, the nucleus rotundus and the dorsolateral, medial, and medial posterior thalamic nuclei contained M-ENK and L-ENK-ir fibers, whereas clusters of M-ENK and L-ENK-ir neurons were observed in the pretectum, mesencephalon, and rhombencephalon. The enkephalinergic fibers were also seen in the area X around the central canal, as well as the dorsal and ventral horns. The widespread distribution of enkephalin-containing neurons within the central nervous system implies that enkephalins regulate a variety of functions in the gecko, including sensory, behavioral, hypophysiotropic, and neuroendocrine functions.


Assuntos
Encefalina Leucina , Lagartos , Neurônios , Animais , Lagartos/metabolismo , Neurônios/metabolismo , Encefalina Leucina/metabolismo , Encefalina Metionina/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Encefalinas/metabolismo , Masculino , Feminino
4.
Anim Reprod Sci ; 263: 107451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490066

RESUMO

In vertebrates, opioid peptides are thought to be involved in the regulation of reproduction; however, the significance of enkephalins in testicular function remains unclear. We examined the influence of δ-opioid receptor agonist leucine enkephalin (L-ENK) on the hypophysial-testicular axis of the cichlid fish Oreochromis mossambicus. Treatment with a low dose of L-ENK (60 µg) caused a significant increase in the numbers of primary and secondary spermatocytes and early and late spermatids, concomitant with intense immunolabelling of testicular androgen receptors, but did not significantly alter serum luteinizing hormone (LH) and 11-ketotestosterone (11-KT) levels compared to those of controls. Nevertheless, treatment with a high dose of L-ENK (200 µg) caused a significant reduction in the numbers of secondary spermatocytes as well as late spermatids associated with marginal immunolabelling of androgen receptors and significantly lower concentrations of serum 11-KT and LH compared to controls. In addition, the serum cortisol level was not affected in low-dose L-ENK-treated fish, but its level was significantly increased in the high-dose L-ENK-treated group. Together, these findings indicate that a low dose of L-ENK stimulates the germ cells at the meiosis stage and promotes further stages of spermatogenesis, whereas a high concentration of L-ENK inhibits spermatogenesis at the advanced stages. This effect appears to be mediated through the suppression of testicular steroidogenesis and the reduction of LH release in the pituitary gland of tilapia. The findings also suggest that elevated L-ENK levels in teleosts may exert their inhibitory influence on the hypophysial-testicular axis via glucocorticoids.


Assuntos
Ciclídeos , Tilápia , Masculino , Animais , Encefalina Leucina/farmacologia , Peptídeos Opioides , Receptores Androgênicos , Hormônio Luteinizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA