Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 119: 103772, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145612

RESUMO

Climate change is increasingly affecting human well-being and will inevitably impact on occupational sectors in terms of costs, productivity, workers' health and injuries. Among the cooling garment developed to reduce heat strain, the ventilation jacket could be considered for possible use in workplaces, as it is wearable without limiting the user's mobility and autonomy. In this study, simulations with a sweating manikin are carried out to investigate the effects of a short-sleeved ventilation jacket on human thermophysiological responses in a warm-dry scenario. Simulations were performed in a climatic chamber (air temperature = 30.1 °C; air velocity = 0.29 m/s; relative humidity = 30.0 %), considering two constant levels of metabolic rate M (M1 = 2.4 MET; M2 = 3.2 MET), a sequence of these two (Work), and three levels of fan velocities (lf = 0; lf=2; lf=4). The results revealed a more evident impact on the mean skin temperature (Tsk) compared to the rectal temperature (Tre), with significant decreases (compared to fan-off) at all M levels, for Tsk from the beginning and for Tre from the 61st minute. Skin temperatures of the torso zones decreased significantly (compared to fan-off) at all M levels, and a greater drop was registered for the Back. The fans at the highest level (lf=4) were significantly effective in improving whole-body and local thermal sensations when compared to fan-off, at all M levels. At the intermediate level (lf=2), the statistical significance varied with thermal zone, M and time interval considered. The results of the simulations also showed that the Lower Torso needs to be monitored at M2 level, as the drop in skin temperature could lead to local overcooling and thermal discomfort. Simulations showed the potential effectiveness of the ventilation jacket, but human trials are needed to verify its cooling power in real working conditions.


Assuntos
Regulação da Temperatura Corporal , Sudorese , Humanos , Regulação da Temperatura Corporal/fisiologia , Temperatura Alta , Manequins , Temperatura Cutânea , Condições de Trabalho , Local de Trabalho , Respiração
2.
Int J Biometeorol ; 67(12): 1957-1964, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37833565

RESUMO

The ClimApp smartphone application was developed to merge meteorological forecast data with personal information for individualized and improved thermal warning during heat and cold stress and for indoor comfort in buildings. For cold environments, ClimApp predicts the personal thermal stress and strain by the use of the Insulation REQuired model that combines weather and personal physiological data with additional consideration of the Wind Chill index based on the local weather forecast. In this study, we validated the individualized ClimApp index relative to measurements and compared it with the Universal Temperature Climate Index (UTCI). To this aim, 55 participants (27 females) were exposed to at least 1 h in an outdoor environment of 10 °C or below (average 1.4 °C air temperature, 74.9% relative humidity, and 4.7 m/s air velocity) inputting their activity level and clothing insulation as instructed by ClimApp. The UTCI and ClimApp indices were calculated and compared to the participants' perceived thermal sensation. The ClimApp index root mean square deviation (RMSD) was below the standard deviation of the perceived thermal sensation which indicates a valid prediction and the UTCI RMSD was higher than the standard deviation which indicates an invalid prediction. The correlation of ClimApp and UTCI to the perceived thermal sensation was statistically significant for both models.


Assuntos
Clima , Smartphone , Feminino , Humanos , Temperatura , Tempo (Meteorologia) , Vento , Sensação Térmica/fisiologia
3.
Environ Res ; 212(Pt D): 113475, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35588774

RESUMO

The increase in average seasonal temperatures has an impact in the occupational field, especially for those sectors whose work activities are performed outdoors (agricultural, road and construction sectors). Among the adaptation measures and solutions developed to counteract occupational heat strain, personal cooling garments represent a wearable technology designed to remove heat from the human body, enhancing human performance. This study aims to investigate the effectiveness and the cooling power of a specific cooling garment, i.e. a ventilation jacket, by quantifying the evaporative heat losses and the total evaporative resistance both when worn alone and in combination with a work ensemble, at three adjustments of air ventilation speed. Standardised "wet" tests in a climatic chamber were performed on a sweating manikin in isothermal conditions considering three clothing ensembles (single jacket, work ensemble and a combination of both) and three adjustments of fan velocity. Results showed a significant increase (p < 0.001) in evaporative heat loss values when the fan velocity increased, particularly within the trunk zones for all the considered clothing ensembles, showing that fans enhanced the dissipation by evaporation. The cooling power, quantified in terms of percent changes of evaporative heat loss, showed values exceeding 100% when fans were on, in respect to the condition of fans-off, for the trunk zones except for the Chest. A significant (p < 0.01) decrease (up to 42.3%) in the total evaporative resistance values of the jacket, coupled with the work ensemble, was found compared to the fans-off condition. Results confirmed and quantified the cooling effect of the ventilation jacket which enhanced the evaporative heat losses of the trunk zones, helping the body to dissipate heat and showing the potential for a heat adaptation measure to be developed.


Assuntos
Temperatura Alta , Dispositivos Eletrônicos Vestíveis , Regulação da Temperatura Corporal , Humanos , Roupa de Proteção , Sudorese , Local de Trabalho
4.
Environ Health ; 19(1): 95, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887627

RESUMO

BACKGROUND: Climate change is set to exacerbate occupational heat strain, the combined effect of environmental and internal heat stress on the body, threatening human health and wellbeing. Therefore, identifying effective, affordable, feasible and sustainable solutions to mitigate the negative effects on worker health and productivity, is an increasingly urgent need. OBJECTIVES: To systematically identify and evaluate methods that mitigate occupational heat strain in order to provide scientific-based guidance for practitioners. METHODS: An umbrella review was conducted in biomedical databases employing the following eligibility criteria: 1) ambient temperatures > 28 °C or hypohydrated participants, 2) healthy adults, 3) reported psychophysiological (thermal comfort, heart rate or core temperature) and/or performance (physical or cognitive) outcomes, 4) written in English, and 5) published before November 6, 2019. A second search for original research articles was performed to identify interventions of relevance but lacking systematic reviews. All identified interventions were independently evaluated by all co-authors on four point scales for effectiveness, cost, feasibility and environmental impact. RESULTS: Following screening, 36 systematic reviews fulfilled the inclusion criteria. The most effective solutions at mitigating occupational heat strain were wearing specialized cooling garments, (physiological) heat acclimation, improving aerobic fitness, cold water immersion, and applying ventilation. Although air-conditioning and cooling garments in ideal settings provide best scores for effectiveness, the limited applicability in certain industrial settings, high economic cost and high environmental impact are drawbacks for these solutions. However, (physiological) acclimatization, planned breaks, shading and optimized clothing properties are attractive alternative solutions when economic and ecological sustainability aspects are included in the overall evaluation. DISCUSSION: Choosing the most effective solution or combinations of methods to mitigate occupational heat strain will be scenario-specific. However, this paper provides a framework for integrating effectiveness, cost, feasibility (indoors and outdoor) and ecologic sustainability to provide occupational health and safety professionals with evidence-based guidelines.


Assuntos
Saúde Global , Transtornos de Estresse por Calor/prevenção & controle , Saúde Ocupacional/estatística & dados numéricos , Medicina do Trabalho/métodos , Mudança Climática , Humanos , Estresse Fisiológico
5.
Int J Biometeorol ; 63(2): 195-196, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610378

RESUMO

Health surveillance and workplace surveillance are two related but different aspects of occupational health services. The assessment of heat stress using heat indices and thermal models in connection with meteorological data is an important part of surveillance of workplace heat. The assessment of heat exposure provides the basis for occupational health services. Workers should have health surveillance if the high heat stress cannot be reduced.


Assuntos
Transtornos de Estresse por Calor/epidemiologia , Exposição Ocupacional , Mudança Climática , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Local de Trabalho
6.
Int J Biometeorol ; 62(3): 359-371, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28444505

RESUMO

Global warming will unquestionably increase the impact of heat on individuals who work in already hot workplaces in hot climate areas. The increasing prevalence of this environmental health risk requires the improvement of assessment methods linked to meteorological data. Such new methods will help to reveal the size of the problem and design appropriate interventions at individual, workplace and societal level. The evaluation of occupational heat stress requires measurement of four thermal climate factors (air temperature, humidity, air velocity and heat radiation); available weather station data may serve this purpose. However, the use of meteorological data for occupational heat stress assessment is limited because weather stations do not traditionally and directly measure some important climate factors, e.g. solar radiation. In addition, local workplace environmental conditions such as local heat sources, metabolic heat production within the human body, and clothing properties, all affect the exchange of heat between the body and the environment. A robust occupational heat stress index should properly address all these factors. This article reviews and highlights a number of selected heat stress indices, indicating their advantages and disadvantages in relation to meteorological data, local workplace environments, body heat production and the use of protective clothing. These heat stress and heat strain indices include Wet Bulb Globe Temperature, Discomfort Index, Predicted Heat Strain index, and Universal Thermal Climate Index. In some cases, individuals may be monitored for heat strain through physiological measurements and medical supervision prior to and during exposure. Relevant protective and preventive strategies for alleviating heat strain are also reviewed and proposed.


Assuntos
Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta/efeitos adversos , Doenças Profissionais/prevenção & controle , Exposição Ocupacional/prevenção & controle , Mudança Climática , Monitoramento Ambiental , Humanos
7.
Ergonomics ; 61(10): 1382-1394, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29785880

RESUMO

This laboratory study examined human stair ascending capacity and constraining factors including legs' local muscle fatigue (LMF) and cardiorespiratory capacity. Twenty-five healthy volunteers, with mean age 35.3 years, maximal oxygen uptake (VO2max) of 46.7 mL·min-1·kg-1 and maximal heart rate (HR) of 190 bpm, ascended on a stair machine at 60 and 75% (3 min each) and 90% of VO2max (5 min or until exhaustion). The VO2, maximal heart rate (HRmax) and electromyography (EMG) of the leg muscles were measured. The average VO2highest reached 43.9 mL·min-1·kg-1, and HRhighest peaked at 185 bpm at 90% of VO2max step rate (SR). EMG amplitudes significantly increased at all three levels, p < .05, and median frequencies decreased mostly at 90% of VO2max SR evidencing leg LMF. Muscle activity interpretation squares were developed and effectively used to observe changes over time, confirming LMF. The combined effects of LMF and cardiorespiratory constraints reduced ascending tolerance and constrained the duration to 4.32 min. Practitioner Summary: To expedite ascending evacuation from high-rise buildings and deep underground structures, it is necessary to consider human physical load. This study investigated the limiting physiological factors and muscle activity rate changes (MARC) used in the muscle activity interpretation squares (MAIS) to evaluate leg local muscle fatigue (LMF). LMF and cardiorespiratory capacity significantly constrain human stair ascending capacities at high, constant step rates.


Assuntos
Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Adulto , Eletromiografia , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
8.
J Therm Biol ; 52: 137-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26267508

RESUMO

Personal cooling systems (PCS) have been developed to mitigate the impact of severe heat stress for humans working in hot environments. It is still a great challenge to develop PCSs that are portable, inexpensive, and effective. We studied the performance of a new hybrid PCS incorporating both ventilation fans and phase change materials (PCMs). The cooling efficiency of the newly developed PCS was investigated on a sweating manikin in two hot conditions: hot humid (HH, 34°C, 75% RH) and hot dry (HD, 34°C, 28% RH). Four test scenarios were selected: fans off with no PCMs (i.e., Fan-off, the CONTROL), fans on with no PCMs (i.e., Fan-on), fans off with fully solidified PCMs (i.e., PCM+Fan-off), and fans on with fully solidified PCMs (i.e., PCM+Fan-on). It was found that the addition of PCMs provided a 54∼78min cooling in HH condition. In contrast, the PCMs only offered a 19-39min cooling in HD condition. In both conditions, the ventilation fans greatly enhanced the evaporative heat loss compared with Fan-off. The hybrid PCS (i.e., PCM+Fan-on) provided a continuous cooling effect during the three-hour test and the average cooling rate for the whole body was around 111 and 315W in HH and HD conditions, respectively. Overall, the new hybrid PCS may be an effective means of ameliorating symptoms of heat stress in both hot-humid and hot-dry environments.


Assuntos
Ar Condicionado/métodos , Ventilação/métodos , Ar Condicionado/instrumentação , Regulação da Temperatura Corporal/fisiologia , Vestuário , Meio Ambiente , Temperatura Alta , Humanos , Umidade , Manequins , Temperatura , Ventilação/instrumentação
9.
Int J Occup Saf Ergon ; 21(4): 457-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26693998

RESUMO

The aim of the study was to identify whether a ventilation cooling shirt was effective in reducing heat strain in a hot climate. Eight female volunteers were exposed to heat (38 °C, 45% relative humidity) for 2 h with simulated office work. In the first hour they were in normal summer clothes (total thermal insulation 0.8 clo); in the second hour a ventilation cooling shirt was worn on top. After the shirt was introduced for 1 h, the skin temperatures at the scapula and the chest were significantly reduced (p < 0.05). The mean skin and core temperatures were not reduced. The subjects felt cooler and more comfortable by wearing the shirt, but the cooling effect was most conspicuous only during the initial 10 min. The cooling efficiency of the ventilation shirt was not very effective under the low physical activity in this hot climate.


Assuntos
Temperatura Corporal/fisiologia , Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta , Doenças Profissionais/prevenção & controle , Roupa de Proteção , Regulação da Temperatura Corporal , Desenho de Equipamento , Feminino , Frequência Cardíaca/fisiologia , Humanos , Temperatura Cutânea/fisiologia , Sudorese/fisiologia , Adulto Jovem
10.
Sci Rep ; 14(1): 7448, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548842

RESUMO

Climate change is closely monitored and numerous studies reports increasing air temperature and weather extremes across the globe. As a direct consequence of the increase of global temperature, the increased heat stress is becoming a global threat to public health. While most climate change and epidemiological studies focus on air temperature to explain the increasing risks, heat strain can be predicted using comprehensive indices such as Universal Thermal Climate Index (UTCI). The Asia-Pacific region is prone to thermal stress and the high population densities in the region impose high health risk. This study evaluated the air temperature and UTCI trends between 1990 and 2019 and found significant increasing trends for air temperature for the whole region while the increases of UTCI are not as pronounced and mainly found in the northern part of the region. These results indicate that even though air temperature is increasing, the risks of heat stress when assessed using UTCI may be alleviated by other factors. The associations between El Niño Southern Oscillation (ENSO) and heat stress was evaluated on a seasonal level and the strongest regional responses were found during December-January (DJF) and March-May (MAM).

11.
Sci Rep ; 13(1): 11068, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422491

RESUMO

In the Asia-Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990-2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June-August (JJA), and by precipitation frequency in December-February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March-May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region.


Assuntos
Desastres , El Niño Oscilação Sul , Tempo (Meteorologia) , Ásia , China
12.
Sci Total Environ ; 862: 160850, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526204

RESUMO

BACKGROUND: The ongoing climate change will elevate the incidence of diarrheal in 2030-2050 in Asia, including Taiwan. This study investigated associations between meteorological factors (temperature, precipitation) and burden of age-cause-specific diarrheal diseases in six regions of Taiwan using 13 years of (2004-2016) population-based data. METHODS: Weekly cause-specific diarrheal and meteorological data were obtained from 2004 to 2016. We used distributed lag non-linear model to assess age (under five, all age) and cause-specific (viral, bacterial) diarrheal disease burden associated with extreme high (99th percentile) and low (5th percentile) of climate variables up to lag 8 weeks in six regions of Taiwan. Random-effects meta-analysis was used to pool these region-specific estimates. RESULTS: Extreme low temperature (15.30 °C) was associated with risks of all-infectious and viral diarrhea, with the highest risk for all-infectious diarrheal found at lag 8 weeks among all age [Relative Risk (RR): 1.44; 95 % Confidence Interval (95 % CI): 1.24-1.67]. The highest risk of viral diarrheal infection was observed at lag 2 weeks regardless the age. Extreme high temperature (30.18 °C) was associated with risk of bacterial diarrheal among all age (RR: 1.07; 95 % CI: 1.02-1.13) at lag 8 weeks. Likewise, extreme high precipitation (290 mm) was associated with all infectious diarrheal, with the highest risk observed for bacterial diarrheal among population under five years (RR: 2.77; 95 % CI: 1.60-4.79) at lag 8 weeks. Extreme low precipitation (0 mm) was associated with viral diarrheal in all age at lag 1 week (RR: 1.08; 95 % CI: 1.01-1.15)]. CONCLUSION: In Taiwan, extreme low temperature is associated with an increased burden of viral diarrheal, while extreme high temperature and precipitation elevated burden of bacterial diarrheal. This distinction in cause-specific and climate-hazard specific diarrheal disease burden underscore the importance of incorporating differences in public health preparedness measures designed to enhance community resilience against climate change.


Assuntos
Temperatura Baixa , Diarreia , Humanos , Adolescente , Lactente , Recém-Nascido , Temperatura , Taiwan/epidemiologia , Risco , Diarreia/epidemiologia
13.
Int J Biometeorol ; 56(1): 177-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21318453

RESUMO

Clothing evaporative resistance is one of the inherent factors that impede heat exchange by sweating evaporation. It is widely used as a basic input in physiological heat strain models. Previous studies showed a large variability in clothing evaporative resistance both at intra-laboratory and inter-laboratory testing. The errors in evaporative resistance may cause severe problems in the determination of heat stress level of the wearers. In this paper, the effect of temperature difference between the manikin nude surface and wet textile skin surface on clothing evaporative resistance was investigated by both theoretical analysis and thermal manikin measurements. It was found that the temperature difference between the skin surface and the manikin nude surface could lead to an error of up to 35.9% in evaporative resistance of the boundary air layer. Similarly, this temperature difference could also introduce an error of up to 23.7% in the real clothing total evaporative resistance (R ( et_real ) < 0.1287 kPa m(2)/W). Finally, it is evident that one major error in the calculation of evaporative resistance comes from the use of the manikin surface temperature instead of the wet textile fabric skin temperature.


Assuntos
Vestuário , Manequins , Temperatura Cutânea , Algoritmos , Umidade , Percepção , Sudorese , Temperatura , Água
14.
Ergonomics ; 55(7): 799-812, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22455389

RESUMO

Evaporative resistance is an important parameter to characterise clothing thermal comfort. However, previous work has focused mainly on either total static or dynamic evaporative resistance. There is a lack of investigation of localised clothing evaporative resistance. The objective of this study was to study localised evaporative resistance using sweating thermal manikins. The individual and interaction effects of air and body movements on localised resultant evaporative resistance were examined in a strict protocol. The boundary air layer's localised evaporative resistance was investigated on nude sweating manikins at three different air velocity levels (0.18, 0.48 and 0.78 m/s) and three different walking speeds (0, 0.96 and 1.17 m/s). Similarly, localised clothing evaporative resistance was measured on sweating manikins at three different air velocities (0.13, 0.48 and 0.70 m/s) and three walking speeds (0, 0.96 and 1.17 m/s). Results showed that the wind speed has distinct effects on local body segments. In contrast, walking speed brought much more effect on the limbs, such as thigh and forearm, than on body torso, such as back and waist. In addition, the combined effect of body and air movement on localised evaporative resistance demonstrated that the walking effect has more influence on the extremities than on the torso. Therefore, localised evaporative resistance values should be provided when reporting test results in order to clearly describe clothing local moisture transfer characteristics. PRACTITIONER SUMMARY: Localised boundary air layer and clothing evaporative resistances are essential data for clothing design and assessment of thermal comfort. A comprehensive understanding of the effects of air and body movement on localised evaporative resistance is also necessary by both textile and apparel researchers and industry.


Assuntos
Febre/prevenção & controle , Saúde Ocupacional , Roupa de Proteção , Regulação da Temperatura Corporal/fisiologia , Desenho de Equipamento , Humanos , Umidade , Manequins , Sudorese , Tronco
15.
Int J Occup Saf Ergon ; 18(2): 171-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22721536

RESUMO

Standard No. EN 15831:2004 provides 2 methods of calculating insulation: parallel and serial. The parallel method is similar to the global one defined in Standard No. ISO 9920:2007. Standards No. EN 342:2004, EN 14058:2004 and EN 13537:2002 refer to the methods defined in Standard No. EN ISO 15831:2004 for testing cold protective clothing or equipment. However, it is necessary to consider several issues, e.g., referring to measuring human subjects, when using the serial method. With one zone, there is no serial-parallel issue as the results are the same, while more zones increase the difference in insulation value between the methods. If insulation is evenly distributed, differences between the serial and parallel method are relatively small and proportional. However, with more insulation layers overlapping in heavy cold protective ensembles, the serial method produces higher insulation values than the parallel one and human studies. Therefore, the parallel method is recommended for standard testing.


Assuntos
Manequins , Roupa de Proteção/normas , Temperatura Baixa , Europa (Continente) , Humanos , Teste de Materiais , Modelos Teóricos , Movimento , Vento
16.
PNAS Nexus ; 1(2): pgac032, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36713319

RESUMO

Climate change is adversely impacting the burden of diarrheal diseases. Despite significant reduction in global prevalence, diarrheal disease remains a leading cause of morbidity and mortality among young children in low- and middle-income countries. Previous studies have shown that diarrheal disease is associated with meteorological conditions but the role of large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO) and monsoon anomaly is less understood. We obtained 13 years (2002-2014) of diarrheal disease data from Nepal and investigated how the disease rate is associated with phases of ENSO (El Niño, La Niña, vs. ENSO neutral) monsoon rainfall anomaly (below normal, above normal, vs. normal), and changes in timing of monsoon onset, and withdrawal (early, late, vs. normal). Monsoon season was associated with a 21% increase in diarrheal disease rates (Incident Rate Ratios [IRR]: 1.21; 95% CI: 1.16-1.27). El Niño was associated with an 8% reduction in risk while the La Niña was associated with a 32% increase in under-5 diarrheal disease rates. Likewise, higher-than-normal monsoon rainfall was associated with increased rates of diarrheal disease, with considerably higher rates observed in the mountain region (IRR 1.51, 95% CI: 1.19-1.92). Our findings suggest that under-5 diarrheal disease burden in Nepal is significantly influenced by ENSO and changes in seasonal monsoon dynamics. Since both ENSO phases and monsoon can be predicted with considerably longer lead time compared to weather, our findings will pave the way for the development of more effective early warning systems for climate sensitive infectious diseases.

17.
Ann Occup Hyg ; 55(7): 775-83, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21669906

RESUMO

This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.


Assuntos
Regulação da Temperatura Corporal , Roupa de Proteção , Sudorese/fisiologia , Peso Corporal , Meio Ambiente , Temperatura Alta , Humanos , Manequins , Teste de Materiais , Permeabilidade
18.
Eur J Appl Physiol ; 111(6): 1207-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21127896

RESUMO

A previous study by the authors using a heated thermal manikin showed that the cooling rates of phase change material (PCM) are dependent on temperature gradient, mass, and covering area. The objective of this study was to investigate if the cooling effects of the temperature gradient observed on a thermal manikin could be validated on human subjects in extreme heat. The subjects wore cooling vests with PCMs at two melting temperatures (24 and 28°C) and fire-fighting clothing and equipment, thus forming three test groups (vest24, vest28 and control group without the vest). They walked on a treadmill at a speed of 5 km/h in a climatic chamber (air temperature = 55°C, relative humidity = 30%, vapour pressure = 4,725 Pa, and air velocity = 0.4 m/s). The results showed that the PCM vest with a lower melting temperature (24°C) has a stronger cooling effect on the torso and mean skin temperatures than that with a higher melting temperature (28°C). Both PCM vests mitigate peak core temperature increase during the resting recovery period. The two PCM vests tested, however, had no significant effect on the alleviation of core temperature increase during exercise in the heat. To study the possibility of effective cooling of core temperature, cooling garments with PCMs at even lower melting temperatures (e.g. 15°C) and a larger covering area should be investigated.


Assuntos
Febre/prevenção & controle , Temperatura Alta , Hipotermia Induzida/instrumentação , Hipotermia Induzida/métodos , Roupa de Proteção , Temperatura de Transição , Adulto , Temperatura Corporal/fisiologia , Meio Ambiente , Teste de Esforço , Incêndios , Temperatura Alta/efeitos adversos , Humanos , Masculino , Ocupações , Transição de Fase , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-34200783

RESUMO

BACKGROUND: Occupational heat exposure can provoke health problems that increase the risk of certain diseases and affect workers' ability to maintain healthy and productive lives. This study investigates the effects of occupational heat stress on workers' physiological strain and labor productivity, as well as examining multiple interventions to mitigate the problem. METHODS: We monitored 518 full work-shifts obtained from 238 experienced and acclimatized individuals who work in key industrial sectors located in Cyprus, Greece, Qatar, and Spain. Continuous core body temperature, mean skin temperature, heart rate, and labor productivity were collected from the beginning to the end of all work-shifts. RESULTS: In workplaces where self-pacing is not feasible or very limited, we found that occupational heat stress is associated with the heat strain experienced by workers. Strategies focusing on hydration, work-rest cycles, and ventilated clothing were able to mitigate the physiological heat strain experienced by workers. Increasing mechanization enhanced labor productivity without increasing workers' physiological strain. CONCLUSIONS: Empowering laborers to self-pace is the basis of heat mitigation, while tailored strategies focusing on hydration, work-rest cycles, ventilated garments, and mechanization can further reduce the physiological heat strain experienced by workers under certain conditions.


Assuntos
Transtornos de Estresse por Calor , Doenças Profissionais , Exposição Ocupacional , Chipre , Grécia , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/etiologia , Transtornos de Estresse por Calor/prevenção & controle , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Catar , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA