Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 44(22): 5566-5569, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730110

RESUMO

The quantum random number generation exploits inherent randomness of quantum mechanical processes and measurements. The real-time generation rate of quantum random numbers is usually limited by electronic bandwidth and data processing rates. Here we use a multiplexing scheme to create a fast real-time quantum random number generator based on continuous variable vacuum fluctuations. Multiple sideband frequency modes of a quantum vacuum state within a homodyne detection bandwidth are concurrently extracted as the randomness source. Parallel postprocessing of raw data from three subentropy sources is realized in one field-programmable gate array (FPGA) based on Toeplitz-hashing extractors. A cumulative generation rate of 8.25 Gbps in real time is achieved. The system relies on optoelectronic components and circuits that could be integrated in a compact, economical package.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA