RESUMO
Traumatic brain injury (TBI) results in severe neurological impairments without effective treatments. Inflammation appears to be an important contributor to key pathogenic events such as secondary brain injury following TBI and therefore serves as a promising target for novel therapies. We have recently demonstrated the ability of a molecular construct comprised of the human leukocyte antigen (HLA)-DRα1 domain linked covalently to mouse (m)MOG-35-55 peptide (DRα1-MOG-35-55 construct) to reduce CNS inflammation and tissue injury in animal models of multiple sclerosis and ischemic stroke. The aim of the current study was to determine if DRα1-MOG-35-55 treatment of a fluid percussion injury (FPI) mouse model of TBI could reduce the lesion size and improve disease outcome measures. Neurodeficits, lesion size, and immune responses were determined to evaluate the therapeutic potential and mechanisms of neuroprotection induced by DRα1-MOG-35-55 treatment. The results demonstrated that daily injections of DRα1-MOG-35-55 given after FPI significantly reduced numbers of infiltrating CD74+ and CD86+ macrophages and increased numbers of CD206+ microglia in the brain concomitant with smaller lesion sizes and improvement in neurodeficits. Conversely, DRα1-MOG-35-55 treatment of TBI increased numbers of circulating CD11b+ monocytes and their expression of CD74 but had no detectable effect on cell numbers or marker expression in the spleen. These results demonstrate that DRα1-MOG-35-55 therapy can reduce CNS inflammation and significantly improve histological and clinical outcomes after TBI. Future studies will further examine the potential of DRα1-MOG-35-55 for treatment of TBI.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Antígeno CD11b/metabolismo , Clonagem Molecular , Antígenos de Histocompatibilidade Classe II/metabolismo , Contagem de Leucócitos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doenças do Sistema Nervoso/etiologia , Fármacos Neuroprotetores/síntese química , Proteínas Recombinantes de Fusão/síntese química , Resultado do TratamentoRESUMO
Although the increase in the number of identified posttranslational modifications (PTMs) has substantially improved our knowledge about substrate site specificity of single PTMs, the fact that different types of PTMs can crosstalk and act in concert to exert important regulatory mechanisms for protein function has not gained much attention. Here, we show that protein kinase Cδ (PKCδ) is SUMOylated at lysine 473 in its C-terminal catalytic domain, and the SUMOylation increases PKCδ stability by repressing its ubiquitination. In addition, we uncover a functional interplay between the phosphorylation and SUMOylation of PKCδ, which can strengthen each other through recruiting SUMO E2/E3 ligases and the PKCδ kinase, respectively, to the PKCδ complexes. We identified PIAS2ß as the SUMO E3 ligase of PKCδ. More importantly, by enhancing PKCδ protein stability and its phosphorylation through an interdependent interplay of the PTMs, the SUMOylation of PKCδ promotes apoptotic cell death induced by H2 O2 . We conclude that SUMOylation represents an important regulatory mechanism of PKCδ PTMs for the kinase's function in oxidative cell damage.
Assuntos
Apoptose , Proteína Quinase C-delta/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células CHO , Cricetulus , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , SumoilaçãoRESUMO
BACKGROUND: Intracerebral hemorrhage (ICH) is a severe type of stroke without effective treatment. The coagulation cascade is activated after blood flows into the brain parenchyma. The conversion of fibrinogen to fibrin is an essential step of coagulation processes, but its influences on neuroinflammation and long-term outcome after ICH have not been adequately studied. Hirudin binds to thrombin and inhibits the conversion of fibrinogen to fibrin. We therefore investigated the impact of hirudin treatment on brain inflammation and long-term outcome of ICH in mice. METHODS: Fibrinogen levels were measured in plasma samples from patients with ICH. In mice subjected to collagenase injection, fibrinogen levels were measured in the plasma and brain. The impact of hirudin on neuroinflammation and long-term neurological outcome was determined in ICH mice. RESULTS: Circulating fibrinogen level was increased in patients with ICH at day 1 and day 4 after onset. In ICH mice, fibrinogen levels in the blood and brain were increased at day 7. Delayed daily administration of hirudin from day 7 to day 28 significantly improved long-term outcome in ICH mice. Hirudin treatment reduced leukocyte accumulation in the brain and shifted microglia toward an anti-inflammatory phenotype. In addition, depletion of microglia in ICH mice diminished the benefit of hirudin in ICH mice. CONCLUSIONS: These results suggest that inhibition of fibrin formation alleviates brain inflammation and improves long-term outcome after ICH.
Assuntos
Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/sangue , Encefalite/sangue , Fibrina/metabolismo , Fibrinogênio/metabolismo , Hirudinas/farmacologia , Animais , Encéfalo/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Encefalite/tratamento farmacológico , Feminino , Terapia com Hirudina , Humanos , Masculino , Camundongos Endogâmicos C57BLRESUMO
Cigarette smoke is a major preventable risk factor of ischemic stroke. Cigarette smoke induces a significant increase in circulating leukocytes. However, it remains unclear to what extent and by what mechanisms smoke priming influences stroke severity. Here we report that exposure to cigarette smoke exacerbated ischemic brain injury in mice subjected to transient middle cerebral artery occlusion (MCAO). The augmentation of neurodeficits and brain infarction was accompanied by increased production of pro-inflammatory factors and brain infiltration of neutrophils and monocytes. Prior to brain ischemia, exposure to cigarette smoke induced mobilization of peripheral neutrophils, and monocytes. Furthermore, the detrimental effects of smoke priming on ischemic brain injury were abolished either by pharmacological inhibition of the recruitment of neutrophils and monocytes or by blockade of the NLRP3 inflammasome, an effector protein of neutrophils and monocytes. Our findings suggest that cigarette smoke-induced mobilization of peripheral neutrophils and monocytes augments ischemic brain injury.