Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299000

RESUMO

Cancer is a serious health problem due to the complexity of establishing an effective treatment. The purpose of this work was to evaluate the activity of a triazaspirane as a migration and invasion inhibitor in PC3 prostatic tumor cells through a possible negative regulation of the FAK/Src signal transduction pathway and decreased secretion of metalloproteinases 2 and 9. Molecular docking analysis was performed using Moe 2008.10 software. Migration (wound-healing assay) and invasion (Boyden chamber assay) assays were performed. In addition, the Western blot technique was used to quantify protein expression, and the zymography technique was used to observe the secretion of metalloproteinases. Molecular docking showed interactions in regions of interest of the FAK and Src proteins. Moreover, the biological activity assays demonstrated an inhibitory effect on cell migration and invasion, an important suppression of metalloproteinase secretion, and a decrease in the expression of p-FAK and p-Src proteins in treated PC3 cells. Triazaspirane-type molecules have important inhibitory effects on the mechanisms associated with metastasis in PC3 tumor cells.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Células PC-3 , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Processos Neoplásicos , Movimento Celular , Metaloproteases/farmacologia , Invasividade Neoplásica
2.
Australas J Dermatol ; 63(4): e312-e319, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904493

RESUMO

INTRODUCTION: It is essential for clinicians to understand the phenomenon of fear of cancer recurrence (FCR) in order to understand the psychological impact it has on patients with melanoma. OBJECTIVES: To validate an FCR questionnaire in Spanish for patients with non-metastatic melanoma and to describe the clinical and demographic variables associated with FCR in these patients. METHODS: Patients diagnosed with non-metastatic melanoma were selected. The questionnaire was translated and adapted to Spanish following international guidelines. The internal consistency, construct validity, and temporal stability of the questionnaire were analysed using Cronbach's alpha, confirmatory factor analysis, and test-retest reliability, respectively. Following this, the correlation between FCR scores and the study variables was evaluated. RESULTS: A total of 123 patients were included in the study. The translated and adapted questionnaire showed high reliability (overall Cronbach's alpha 0.834), temporal stability (intraclass correlation coefficient 0.8), and unidimensionality. The mean FCR score was 16.1 ± 6.7. The highest FCR scores were observed in women and young patients (p < 0.01). Patients with a personal history of cancer, facial melanoma, or skin graft reconstruction also obtained a high FCR score (p < 0.05). No differences were found between FCR and other tumour characteristics, such as the Breslow index or the time since diagnosis. CONCLUSIONS: This validated questionnaire is suitable for evaluating FCR. We also identified factors that tend to increase FCR scores, thus allowing clinicians to identify patients at risk and start preventive measures.


Assuntos
Melanoma , Transtornos Fóbicos , Humanos , Feminino , Reprodutibilidade dos Testes , Medo/psicologia , Transtornos Fóbicos/psicologia , Inquéritos e Questionários , Melanoma/psicologia
3.
J Cell Biochem ; 120(3): 4158-4171, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30320914

RESUMO

Endoplasmic reticulum stress is a cellular phenomenon that has been associated with metabolic disorders, contributing to the development of obesity, fatty liver disease, and dyslipidemias. Under metabolic overload conditions, in cells with a high protein-secretory activity, such as hepatocytes and Langerhans ß cells, the unfolded protein response (UPR) is critical in to maintain protein homeostasis (proteostasis). UPR integrated by a tripartite signaling system, through activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1, regulates gene transcription and translation to resolve stress and conserve proteostasis. In the current study, we demonstrated in hepatocytes under metabolic overload by saturated palmitic and stearic fatty acids, through activation of PERK signaling and CCAAT-enhancer-binding protein homologous protein (CHOP) transcription factor, an association with the expression of cyclooxygenase 2. More important, isolated exosomes from supernatants of macrophages exposed to lipopolysaccharides can also induce a metainflammation phenomenon, and when treated on hepatocytes, induced a rearrangement in cholesterol metabolism through sterol regulatory element-binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), apolipoprotein A-I, and ABCA1. Moreover, we demonstrate the cellular effect of terpene-derived molecules, such as cryptotanshinone, isolated of plant Salvia brandegeei, regulating metainflammatory conditions through PERK pathway in both hepatocytes and ß cells. Our data suggest the presence of a modulatory mechanism on specific protein translation process. This effect could be mediated by eukaryotic initiation factor-4A, evaluating salubrinal as a control molecule. Likewise, the protective mechanisms of unsaturated fatty acids, such as oleic and palmitoleic acid were confirmed. Therefore, modulation of metainflammation suggests a new target through PERK signaling in cells with a high secretory activity, and possibly the regulation of cholesterol in hepatocytes is promoted via exosomes.


Assuntos
Colesterol/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Biossíntese de Proteínas , eIF-2 Quinase/metabolismo , Animais , Canfanos , Ciclo-Oxigenase 2/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Exossomos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Inflamação/tratamento farmacológico , Células Secretoras de Insulina/metabolismo , Camundongos , Panax notoginseng , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Células RAW 264.7 , Ratos , Salvia miltiorrhiza , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Tunicamicina/farmacologia
4.
Biochem Biophys Res Commun ; 505(2): 365-371, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30253944

RESUMO

Amphiphysin 2 and members of the BAR-domain family of proteins participate in a wide array of cellular processes including cell cycle and endocytosis. Given that amphiphysin 2 is related to diverse cell responses as a result of metabolic stress, we investigated in macrophages whether oxidative stress originated by the internalization of oxidized low density lipoproteins (oxLDL) affect both, the expression of amphiphysin 2 and its binding partner c-Myc. Here we report that under oxidative stress, a complex formation between amphiphysin 2(Bin1) and c-Myc allows the cell to develop a novel survival equilibrium state established between cell proliferation and cell death. We propose that under conditions of oxidative stress given by the internalization of oxLDL, macrophages employ the formation of the amphiphysin 2(Bin1)/c-Myc complex as a control mechanism to initially avoid the process of cell death in an attempt to prolong cell survival.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sobrevivência Celular , Endocitose , Lipoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Lipoproteínas/síntese química , Lipoproteínas LDL/metabolismo , Substâncias Macromoleculares/química , Macrófagos/citologia , Macrófagos/metabolismo , Estresse Oxidativo
5.
Int J Mol Sci ; 19(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30149660

RESUMO

Ceramides are key lipids in energetic-metabolic pathways and signaling cascades, modulating critical physiological functions in cells. While synthesis of ceramides is performed in endoplasmic reticulum (ER), which is altered under overnutrition conditions, proteins associated with ceramide metabolism are located on membrane arrangement of mitochondria and ER (MAMs). However, ceramide accumulation in meta-inflammation, condition that associates obesity with a chronic low-grade inflammatory state, favors the deregulation of pathways such as insulin signaling, and induces structural rearrangements on mitochondrial membrane, modifying its permeability and altering the flux of ions and other molecules. Considering the wide biological processes in which sphingolipids are implicated, they have been associated with diseases that present abnormalities in their energetic metabolism, such as breast cancer. In this sense, sphingolipids could modulate various cell features, such as growth, proliferation, survival, senescence, and apoptosis in cancer progression; moreover, ceramide metabolism is associated to chemotherapy resistance, and regulation of metastasis. Cell⁻cell communication mediated by exosomes and lipoproteins has become relevant in the transport of several sphingolipids. Therefore, in this work we performed a comprehensive analysis of the state of the art about the multifaceted roles of ceramides, specifically the deregulation of ceramide metabolism pathways, being a key factor that could modulate neoplastic processes development. Under specific conditions, sphingolipids perform important functions in several cellular processes, and depending on the preponderant species and cellular and/or tissue status can inhibit or promote the development of metabolic and potentially breast cancer disease.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Metabolismo dos Carboidratos , Ceramidas/metabolismo , Animais , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/metabolismo , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Feminino , Humanos , Inflamação/complicações , Inflamação/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Metástase Neoplásica , Transdução de Sinais , Esfingolipídeos/metabolismo
6.
Int J Mol Sci ; 16(8): 17193-230, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26225966

RESUMO

Highly sophisticated mechanisms that modulate protein structure and function, which involve synthesis and degradation, have evolved to maintain cellular homeostasis. Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious cell processes. Therefore in recent years the etiology of a great number of diseases has been attributed to failures in mechanisms that modulate protein structure. Interconnections among metabolic and cell signaling pathways are critical for homeostasis to converge on mechanisms associated with protein folding as well as for the preservation of the native structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive unfolded protein response (UPR). Therefore, taking this into consideration, a key part of this paper is developed around the protein folding phenomenon, and cellular mechanisms which support this pivotal condition. We provide an overview of chaperone protein function, UPR via, spatial compartmentalization of protein folding, proteasome role, autophagy, as well as the intertwining between these processes. Several diseases are known to have a molecular etiology in the malfunction of mechanisms responsible for protein folding and in the shielding of native structure, phenomena which ultimately lead to misfolded protein accumulation. This review centers on our current knowledge about pathways that modulate protein folding, and cell responses involved in protein homeostasis.


Assuntos
Chaperonas Moleculares/metabolismo , Desdobramento de Proteína , Resposta a Proteínas não Dobradas , Animais , Homeostase , Humanos , Chaperonas Moleculares/química
7.
J Struct Biol ; 186(1): 19-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530617

RESUMO

The cholesteryl-ester transfer protein (CETP) promotes cholesteryl-ester and triglyceride transfer between lipoproteins. We evaluated the secondary structure stability of a series of small peptides derived from the C-terminus of CETP in a wide range of pH's and lipid mixtures, and studied their capability to carry out disorder-to-order secondary structure transitions dependent of lipids. We report that while a mixture of phosphatidylcholine/cholesteryl-esters forms large aggregated particles, the inclusion of a series of CETP carboxy-terminal peptides in a stable α-helix conformation, allows the formation of small homogeneous micelle-like structures. This phenomenon of lipid ordering was directly connected to secondary structural transitions at the C-terminus domain when lysophosphatidic acid and lysophosphatidylcholine lipids were employed. Circular dichroism, cosedimentation experiments, electron microscopy, as well as molecular dynamics simulations confirm this phenomenon. When purified CETP is studied, the same type of phenomenon occurs by promoting the reorganization of lipid from large to smaller particles. Our findings extend the emerging view for a novel mechanism of lipid transfer carried out by CETP, assigning its C-terminus domain the property to accomplish lipid ordering through secondary structure disorder-to-order transitions.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/química , Sequência de Aminoácidos , Transporte Biológico , Humanos , Lisofosfolipídeos/química , Micelas , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Mol Cell Biochem ; 393(1-2): 99-109, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24748322

RESUMO

The structure of apolipoprotein A-I (apoA-I), the major protein of HDL, has been extensively studied in past years. Nevertheless, its corresponding three-dimensional structure has been difficult to obtain due to the frequent conformational changes observed depending on the microenvironment. Although the function of each helical segment of this protein remains unclear, it has been observed that the apoA-I amino (N) and carboxy-end (C) domains are directly involved in receptor-recognition, processes that determine the diameter for HDL particles. In addition, it has been observed that the high structural plasticity of these segments might be related to several amyloidogenic processes. In this work, we studied a series of peptides derived from the N- and C-terminal domains representing the most hydrophobic segments of apoA-I. Measurements carried out using circular dichroism in all tested peptides evidenced that the lipid environment promotes the formation of α-helical structures, whereas an aqueous environment facilitates a strong tendency to adopt ß-sheet/disordered conformations. Electron microscopy observations showed the formation of amyloid-like structures similar to those found in other well-defined amyloidogenic proteins. Interestingly, when the apoA-I peptides were incubated under conditions that promote stable globular structures, two of the peptides studied were cytotoxic to microglia and mouse macrophage cells. Our findings provide an insight into the physicochemical properties of key segments contained in apoA-I which may be implicated in disorder-to-order transitions that in turn maintain the delicate equilibrium between both, native and abnormal conformations, and therefore control its propensity to become involved in pathological processes.


Assuntos
Proteínas Amiloidogênicas/química , Apolipoproteína A-I/química , Peptídeos/química , Conformação Proteica , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Lipídeos/química , Camundongos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
9.
Biomedicines ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672098

RESUMO

Dyslipidemias involving high concentrations of low-density lipoproteins (LDLs) increase the risk of developing triple-negative breast cancer (TNBC), wherein cholesterol metabolism and protein translation initiation mechanisms have been linked with chemoresistance. Doxorubicin (Dox) treatment, a member of the anthracycline family, represents a typical therapeutic strategy; however, chemoresistance remains a significant challenge. Exosomes (Exs) secreted by tumoral cells have been implicated in cell communication pathways and chemoresistance mechanisms; the content of exosomes is an outcome of cellular cholesterol metabolism. We previously induced Dox resistance in TNBC cell models, characterizing a variant denominated as variant B cells. Our results suggest that LDL internalization in parental and chemoresistant variant B cells is associated with increased cell proliferation, migration, invasion, and spheroid growth. We identified the role of eIF4F translation initiation factor and the down-regulation of tumor suppressor gene PDCD4, an inhibitor of eIF4A, in chemoresistant variant B cells. In addition, the exomes secreted by variant B cells were characterized by the protein content, electronic microscopy, and cell internalization assays. Critically, exosomes purified from LDL-treated variant B cell promoted cell proliferation, migration, and an increment in lactate concentration. Our results suggest that an autocrine phenomenon induced by exosomes in chemoresistant cells may induce modifications on signaling mechanisms of the p53/Mdm2 axis and activation of p70 ribosomal protein kinase S6. Moreover, the specific down-regulated profile of chaperones Hsp90 and Hsp70 secretion inside the exosomes of the chemoresistant variant could be associated with this phenomenon. Therefore, autocrine activation mediated by exosomes and the effect of LDL internalization may influence changes in exosome chaperone content and modulate proliferative signaling pathways, increasing the aggressiveness of MDA-MB-231 chemoresistant cells.

10.
Biochem Biophys Res Commun ; 434(1): 54-9, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23545259

RESUMO

Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D470N promotes a conformational change towards a ß-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D470N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a ß-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the ß-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of ß-structures were recorded. Mixtures with a positive net charge diminished the percentage of ß-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of amyloid fibrils in the highly flexible C-terminus domain of CETP.


Assuntos
Amiloide/biossíntese , Proteínas de Transferência de Ésteres de Colesterol/química , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/ultraestrutura , Proteínas de Transferência de Ésteres de Colesterol/ultraestrutura , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/ultraestrutura
11.
Rep Biochem Mol Biol ; 11(4): 684-693, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37131907

RESUMO

Background: : Cancer continues worldwide. It has been reported that OTUB1, a cysteine protease, plays a critical role in a variety of tumors and is strongly related to tumor proliferation, migration, and clinical prognosis by its functions on deubiquitination. Drug advances continue against new therapeutic targets. In this study we used OTUB1 to develop a specific pharmacological treatment to regulate deubiquitination by OTUB1. The aim of this research is to regulate OTUB1 functions. Methods: By molecular docking in a specific potential OTUB1 interaction site between Asp88, Cys91, and His26 amino acids, using a chemical library of over 500,000 compounds, we selected potential inhibitors of the OTUB1 catalytic site. Results: Ten compounds (OT1 - OT10) were selected by molecular docking to develop a new anti-cancer drug to decrease OTUB1 functions in cancer processes. Conclusion: OT1 - OT10 compounds could be interacting in the potential site between Asp88, Cys91, and His265 amino acids in OTUB1. This site is necessary for the deubiquitinating function of OTUB1. Therefore, this study shows another way to attack cancer.

12.
Life (Basel) ; 13(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38137922

RESUMO

Resistin is an adipokine with metabolic and inflammatory functions. Epidemiological and translational studies report that an increase in plasma levels and tissue expression of resistin increases the aggressiveness of prostate tumor cells. Extracellular vesicles (EVs) are secreted constitutively and induced by cytokines, growth factors, and calcium and are found in multiple biological fluids such as saliva, serum, semen, and urine. In particular, EVs have been shown to promote tumor progression through the induction of proliferation, growth, angiogenesis, resistance to chemotherapy, and metastasis. However, the role of resistin in the migration, invasion, and secretion of EVs in invasive prostate tumor cells remains to be studied. In the present study, we demonstrate that resistin induces increased migration and invasion in PC3 cells. In addition, these phenomena are accompanied by increased p-FAK levels and increased secretion of MMP-2 and MMP-9 in resistin-treated PC3 cells. Interestingly, EVs isolated from supernatants of PC3 cells treated with resistin induce an increase in migration and invasion accompanied by high MMP-2 and MMP-9 secretion in an autocrine stimulation model. In summary, our data for the first time demonstrate that resistin induces migration and invasion, partly through the secretion of EVs with pro-invasive characteristics in PC3 cells.

13.
Adv Protein Chem Struct Biol ; 132: 111-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36088073

RESUMO

Pathways that regulate protein homeostasis (proteostasis) in cells range from mRNA processing to protein degradation; perturbations in regulatory mechanisms of these pathways can lead to oncogenic cellular processes. Protein synthesis modulation failures are common phenomena in cancer cells, wherein specific conditions that promote the translation of protein factors promoting carcinogenesis are present. These specific conditions may be favored by metabolic lipid alterations like those found in metabolic syndrome and obesity. Protein translation modifications have been described in obesity, favoring the translation of protein targets that benefit lipid accumulation; a determining factor is the activity of the cap-binding eukaryotic translation initiation factor 4E (eIF4E), a crosstalk in protein translation and lipogenesis. Besides, alterations of protein translation initiation steps are critical participants for the development of both pathogenic conditions, cancer, and obesity. This chapter is focused on the regulation of recognition and processing of carcinogenic-mRNA and the connections among lipid metabolism and cell signaling pathways that promote oncogenesis, tumoral microenvironment generation and potentially the development of chemoresistance. We performed an in-depth analysis of events, such as those occurring in obesity and dyslipidemias, that may influence protein translation, driving the recognition of certain mRNAs and favoring cancer development and chemoresistance.


Assuntos
Fator de Iniciação 4E em Eucariotos , Neoplasias , Resistencia a Medicamentos Antineoplásicos , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Lipídeos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Obesidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microambiente Tumoral
14.
Metabolites ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005626

RESUMO

Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans ß-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by ß-cells, and exposition to LDL can impair these phenomena. ß-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on ß-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that ß-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive ß-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from ß-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.

15.
ACS Omega ; 7(47): 42752-42762, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467934

RESUMO

Cellular labeling through the use of dyes is of great interest to the biomedical sciences for the characterization of the location and distribution of biomolecules and also for the tracking of the course of biological processes in both health and illness. This paper reports the synthesis, characterization, and subsequent evaluation as metal sensors and cell staining probes of four aza-BODIPY compounds [herein referred to as 7(a-d)]. Compounds 7(b-d) were found to display an outstanding selectivity for Cu(II) because their emission band at 720 nm was progressively quenched by this metal, presenting fluorescence quenching between 75 and 95%. On the other hand, cell imaging studies with pancreatic ß-cells proved that aza-BODIPYs 7a and 7b showed selectivity for the cytoplasm, while 7c and 7d were selective for the cell membrane. Moreover, aza-BODIPY 7b allowed to characterize in a clear way a lipotoxic condition mediated by saturated fatty acids, a critical phenomenon on ß-cell damage associated with diabetes mellitus type II. Taken together, the presented results highlight the obtained aza-BODIPY compounds as selective sensing/staining probes with the potential to be used in the biomedical field.

16.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552834

RESUMO

Cells employ several adaptive mechanisms under conditions of accelerated cell division, such as the unfolded protein response (UPR). The UPR is composed of a tripartite signaling system that involves ATF6, PERK, and IRE1, which maintain protein homeostasis (proteostasis). However, deregulation of protein translation initiation could be associated with breast cancer (BC) chemoresistance. Specifically, eukaryotic initiation factor-4A (eIF4A) is involved in the unfolding of the secondary structures of several mRNAs at the 5' untranslated region (5'-UTR), as well as in the regulation of targets involved in chemoresistance. Importantly, the tumor suppressor gene PDCD4 could modulate this process. This regulation might be disrupted in chemoresistant triple negative-BC (TNBC) cells. Therefore, we characterized the effect of doxorubicin (Dox), a commonly used anthracycline medication, on human breast carcinoma MDA-MB-231 cells. Here, we generated and characterized models of Dox chemoresistance, and chemoresistant cells exhibited lower Dox internalization levels followed by alteration of the IRE1 and PERK arms of the UPR and triggering of the antioxidant Nrf2 axis. Critically, chemoresistant cells exhibited PDCD4 downregulation, which coincided with a reduction in eIF4A interaction, suggesting a sophisticated regulation of protein translation. Likewise, Dox-induced chemoresistance was associated with alterations in cellular migration and invasion, which are key cancer hallmarks, coupled with changes in focal adhesion kinase (FAK) activation and secretion of matrix metalloproteinase-9 (MMP-9). Moreover, eIF4A knockdown via siRNA and its overexpression in chemoresistant cells suggested that eIF4A regulates FAK. Pro-atherogenic low-density lipoproteins (LDL) promoted cellular invasion in parental and chemoresistant cells in an MMP-9-dependent manner. Moreover, Dox only inhibited parental cell invasion. Significantly, chemoresistance was modulated by cryptotanshinone (Cry), a natural terpene purified from the roots of Salvia brandegeei. Cry and Dox co-exposure induced chemosensitization, connected with the Cry effect on eIF4A interaction. We further demonstrated the Cry binding capability on eIF4A and in silico assays suggest Cry inhibition on the RNA-processing domain. Therefore, strategic disruption of protein translation initiation is a druggable pathway by natural compounds during chemoresistance in TNBC. However, plasmatic LDL levels should be closely monitored throughout treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Ligação a RNA/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Doxorrubicina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo
17.
Int J Mol Sci ; 12(3): 2019-35, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21673937

RESUMO

The cholesteryl-ester transfer protein (CETP) facilitates the transfer of cholesterol esters and triglycerides between lipoproteins in plasma where the critical site for its function is situated in the C-terminal domain. Our group has previously shown that this domain presents conformational changes in a non-lipid environment when the mutation D(470)N is introduced. Using a series of peptides derived from this C-terminal domain, the present study shows that these changes favor the induction of a secondary ß-structure as characterized by spectroscopic analysis and fluorescence techniques. From this type of secondary structure, the formation of peptide aggregates and fibrillar structures with amyloid characteristics induced cytotoxicity in microglial cells in culture. These supramolecular structures promote cell cytotoxicity through the formation of reactive oxygen species (ROS) and change the balance of a series of proteins that control the process of endocytosis, similar to that observed when ß-amyloid fibrils are employed. Therefore, a fine balance between the highly dynamic secondary structure of the C-terminal domain of CETP, the net charge, and the physicochemical characteristics of the surrounding microenvironment define the type of secondary structure acquired. Changes in this balance might favor misfolding in this region, which would alter the lipid transfer capacity conducted by CETP, favoring its propensity to substitute its physiological function.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/química , Peptídeos/química , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Camundongos , Fragmentos de Peptídeos/química , Peptídeos/síntese química , Peptídeos/toxicidade , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
18.
J Cancer ; 12(14): 4307-4321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093831

RESUMO

ApoB-lipoproteins and their components modulate intracellular metabolism and have been associated with the development of neoplastic phenomena, such as proliferation, anchorage-independent growth, epithelial-mesenchymal transition, and cancer invasion. In cancer cells, the modulation of targets that regulate cholesterol metabolism, such as synthesis de novo, endocytosis, and oxidation, are contributing factors to cancer development. While mechanisms associated with sterol regulatory element-binding protein 2 (SREBP-2)/mevalonate, the low-density lipoprotein receptor (LDL-R) and liver X receptor (LXR) have been linked with tumor growth; metabolites derived from cholesterol-oxidation, such as oxysterols and epoxy-cholesterols, also have been described as tumor processes-inducers. From this notion, we perform an analysis of the role of lipoproteins, their association with intracellular cholesterol metabolism, and the impact of these conditions on breast cancer development, mechanisms that can be shared during atherogenesis promoted mainly by LDL. Pathways connecting plasma dyslipidemias in conjunction with the effect of cholesterol-derived metabolites on intracellular mechanisms and cellular plasticity phenomena could provide new approaches to elucidate the triggering factors of carcinogenesis, conditions that could be considered in the development of new therapeutic approaches.

19.
Int J Rheumatol ; 2020: 1594573, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180808

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which can cause cartilage and bone damages as well as pain and disability. In order to prevent disease progression, reduce pain, and major symptoms of RA, one good strategy consists in targeting proinflammatory cytokines that have the key role in the vicious circle of synovial inflammation and pain. The micro-immunotherapy medicine (MIM) 2LARTH® targets cytokines involved in inflammation. AIM: The aim of the study is to evaluate the effect of the MIM compared to vehicle in an in vivo model of RA, induced in mice after immunization with articular bovine type II collagen. METHODS: Vehicle and MIM were dissolved in pure water (1 capsule in 100 ml) and 100 µl was given by gavage daily for 14 days. To evaluate the severity of arthritis, wrist and ankle thickness was determined, paw edema was measured, and a clinical score from 0 to 4 was established. Furthermore, histological analysis was performed. To evaluate systemic inflammation, circulating levels of IL-1ß and TNF-α were measured by ELISA. RESULTS: Ankle thickness was found to be significantly reduced in MIM-treated mice compared to vehicle-treated mice (P < 0.05) and compared to untreated me (P < 0.05) and compared to untreated me (P < 0.05) and compared to untreated me (ß and TNF-α were measured by ELISA. P < 0.05) and compared to untreated me (. CONCLUSION: The results indicate that the tested medicine reduces inflammation, histological, and clinical signs of RA in a CIA model.

20.
Biomolecules ; 10(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824918

RESUMO

Human islet amyloid polypeptide (hIAPP) corresponds to a 37-residue hormone present in insulin granules that maintains a high propensity to form ß-sheet structures during co-secretion with insulin. Previously, employing a biomimetic approach, we proposed a panel of optimized IAPP sequences with only one residue substitution that shows the capability to reduce amyloidogenesis. Taking into account that specific membrane lipids have been considered as a key factor in the induction of cytotoxicity, in this study, following the same design strategy, we characterize the effect of a series of lipids upon several polypeptide domains that show the highest aggregation propensity. The characterization of the C-native segment of hIAPP (residues F23-Y37), together with novel variants F23R and I26A allowed us to demonstrate an effect upon the formation of ß-sheet structures. Our results suggest that zwitterionic phospholipids promote adsorption of the C-native segments at the lipid-interface and ß-sheet formation with the exception of the F23R variant. Moreover, the presence of cholesterol did not modify this behavior, and the ß-sheet structural transitions were not registered when the N-terminal domain of hIAPP (K1-S20) was characterized. Considering that insulin granules are enriched in phosphatidylserine (PS), the property of lipid vesicles containing negatively charged lipids was also evaluated. We found that these types of lipids promote ß-sheet conformational transitions in both the C-native segment and the new variants. Furthermore, these PS/peptides arrangements are internalized in Langerhans islet ß-cells, localized in the endoplasmic reticulum, and trigger critical pathways such as unfolded protein response (UPR), affecting insulin secretion. Since this phenomenon was associated with the presence of cytotoxicity on Langerhans islet ß-cells, it can be concluded that the anionic lipid environment and degree of solvation are critical conditions for the stability of segments with the propensity to form ß-sheet structures, a situation that will eventually affect the structural characteristics and stability of IAPP within insulin granules, thus modifying the insulin secretion.


Assuntos
Homeostase , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos/química , Humanos , Células Secretoras de Insulina/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA