Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Org Chem ; 89(6): 4042-4055, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38438277

RESUMO

Recent years have witnessed an increasing interest in the synthesis and study of BODIPY-glycoconjugates. Most of the described synthetic methods toward these derivatives involve postfunctional modifications of the BODIPY core followed by the covalent attachment of the fluorophore and the carbohydrate through a "connector". Conversely, few de novo synthetic approaches to linker-free carbohydrate-BODIPY hybrids have been described. We have developed a reliable modular, de novo, synthetic strategy to linker-free BODIPY-sugar derivatives using the condensation of pyrrole C-glycosides with a pyrrole-carbaldehyde derivative mediated by POCl3. This methodology allows labeling of carbohydrate biomolecules with fluorescent-enough BODIPYs within the biological window, stable in aqueous media, and able to display singlet oxygen generation.


Assuntos
Compostos de Boro , Glicosídeos , Pirróis
2.
Phys Chem Chem Phys ; 24(10): 5929-5938, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35195637

RESUMO

Generation of triplet states in assemblies of organic chromophores is extremely appealing for their potential use in optoelectronic applications. In this work, we investigate the intricacies of triplet state generation in an orthogonal BODIPY dimer by combining delayed photoemission techniques with electronic structure calculations. Our analysis provides a deep understanding of the electronic states involved, and describes different competing deactivation channels beyond prompt radiative decay. In particular, we identify charge-transfer (CT) mediated intersystem crossing (ISC) as the most likely mechanism for the triplet state generation in this system. The different emission bands at long times can be associated with delayed fluorescence, CT emission and phosphorescence from multiple low-energy triplets. Interestingly, the dependence of the yield of triplet state population and emission profiles with the solvent polarity evidences the decisive role of the CT configuration in the fate of the photoactivated dimer, controlling the relative ISC, reverse ISC, and internal conversion efficiencies. Overall, the present results provide a rather complete description of the delayed photophysics in the BODIPY dimer, but are not able to fully rationalize the unexpected photoluminescence recorded at long wavelengths (≥ 900 nm). We hypothesize that the origin of this emission, not present in BODIPY monomers, emerges from intermonomer interactions triggered by intramolecular distortions opening up a new vision in the controverted mechanism driving the photophysical behavior from orthogonally linked organic monomers.

3.
Phys Chem Chem Phys ; 24(44): 27441-27448, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36341868

RESUMO

We envisioned a new approach for achieving triplet-triplet annihilation-assisted photon upconversion based on the rational design of a heavy-atom-free, all-organic and photoactivatable triplet-triplet synergistic multichromophoric molecular assembly. This single molecular architecture is easily built by covalently anchoring triplet-annihilator units (pyrenes) to a triplet-photosensitizer moiety (BODIPY), to improve the effectiveness and probability of the required triplet-triplet energy transfer and the ulterior triplet-triplet annihilation. This unprecedented design takes advantage of the high synthetic accessibility and chemical versatility of the COO-BODIPY scaffold. The laser-induced photophysical characterization, assisted by computational simulations (quantum mechanics calculations at single molecular level and molecular dynamics in a solvent cage), identifies the key factors to finely control the intersystem crossing and reverse intersystem crossing probability, pivotal to improve energy transfer efficiency between the involved triplet states. Likewise, theoretical simulations highlight the relevance of the new photoactivable chromophoric design to promote intra- and inter-molecular triplet-triplet annihilation towards enhanced photon upconversion, yielding noticeable fluorescence from pyrene units even under unfavorable conditions (aerated solutions of low concentration at room temperature). The understanding of the complex dynamics sustained by this single molecular architecture could approach the next generation of chemically accessible and low-cost materials enabling fluorescence by photon upconversion mediated by triplet-triplet annihilation.


Assuntos
Fótons , Pirenos , Transferência de Energia
4.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897859

RESUMO

We performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible. The observation of triplet state formation indicates a breakthrough in the "classic" interpretation of the photophysical properties of the renowned BODIPY and its derivatives.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Compostos de Boro/química , Análise Espectral
5.
J Org Chem ; 86(13): 9181-9188, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156858

RESUMO

Novel, linker-free, BODIPY-carbohydrate derivatives containing sugar residues at positions C2 and C6 are efficiently obtained by, hitherto unreported, Ferrier-type C-glycosylation of 8-aryl-1,3,5,7-tetramethyl BODIPYs with commercially available tri-O-acetyl-d-glucal followed by saponification. This transformation, which involves the electrophilic aromatic substitution (SEAr) of the dipyrrin framework with an allylic oxocarbenium ion, provides easy access to BODIPY-carbohydrate hybrids with excellent photophysical properties and a weaker tendency to aggregate in concentrated water solutions.


Assuntos
Compostos de Boro , Água , Carboidratos , Glicosilação
6.
Phys Chem Chem Phys ; 23(19): 11191-11195, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33954326

RESUMO

Herein we detail a protocol to design dyads and triads based solely on BODIPY dyes as halogen-free singlet oxygen photosensitizers or energy transfer molecular cassettes. The conducted photonic characterization reveals the key role of the BODIPY-BODIPY linkage to finely modulate the balance between the triplet state population and fluorescence decay.

7.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068920

RESUMO

A convergent synthetic route to a tetrasaccharide related to PI-88, which allows the incorporation of a fluorescent BODIPY-label at the reducing-end, has been developed. The strategy, which features the use of 1,2-methyl orthoesters (MeOEs) as glycosyl donors, illustrates the usefulness of suitably-designed BODIPY dyes as glycosyl labels in synthetic strategies towards fluorescently-tagged oligosaccharides.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/química , Oligossacarídeos/síntese química , Coloração e Rotulagem , Antineoplásicos/química , Glicosilação , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Espectrometria de Fluorescência , Estereoisomerismo
8.
Chemistry ; 26(68): 16080-16088, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32721057

RESUMO

The search for long-lived red and NIR fluorescent dyes is challenging and hitherto scarcely reported. Herein, the viability of aza-BODIPY skeleton as a promising system for achieving thermal activated delayed fluorescent (TADF) probes emitting in this target region is demonstrated for the first time. The synthetic versatility of this scaffold allows the design of energy and charge transfer cassettes modulating the stereoelectronic properties of the energy donors, the spacer moieties and the linkage positions. Delayed emission from these architectures is recorded in the red spectral region (695-735 nm) with lifetimes longer than 100 µs in aerated solutions at room temperature. The computational-aided photophysical study under mild and hard irradiation regimes disclose the interplay between molecular structure and photonic performance to develop long-lived fluorescence red emitters through thermally activated reverse intersystem crossing. The efficient and long-lasting NIR emission of the newly synthesized aza-BODIPY systems provides a basis to develop advanced optical materials with exciting and appealing photonic response.

9.
Chemistry ; 26(24): 5388-5399, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31999023

RESUMO

A series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness. Accordingly, some BODIPY derivatives described in this work can withstand the reaction conditions commonly employed in the chemical synthesis of saccharides; namely, glycosylation and protecting-group manipulations. Regarding their photophysical properties, the BODIPY-labeled saccharides obtained in this work display remarkable fluorescence efficiency in water, reaching quantum yield values up to 82 %, as well as notable lasing efficiencies and photostabilities.


Assuntos
Compostos de Boro/química , Boro/química , Corantes Fluorescentes/química , Porfobilinogênio/análogos & derivados , Fluorescência , Glicosilação , Luz , Porfobilinogênio/química
10.
J Org Chem ; 85(7): 4594-4601, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138513

RESUMO

A general and straightforward method for the synthesis of COO-BODIPYs from F-BODIPYs and carboxylic acids is established. The method is based on the use of boron trichloride to activate the involved substitution of fluorine, which leads to high yields through rapid reactions under soft conditions. This mild method opens the way to unprecedented laser dyes with outstanding efficiencies and photostabilities, which are difficult to obtain by the current methods.

11.
Chemistry ; 25(65): 14959-14971, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515840

RESUMO

The development of efficient and stable red and near-IR emitting materials under hard radiation doses and/or prolonged times is a sought-after task due to their widespread applications in optoelectronics and biophotonics. To this aim, novel symmetric all-BODIPY-triads, -pentads, and -hexads have been designed and synthesized as light-harvesting arrays. These photonic materials are spectrally active in the 655-730 nm region and display high molar absorption across UV-visible region. Furthermore, they provide, to the best of our knowledge, the highest lasing efficiency (up to 68 %) and the highest photostability (tolerance >1300 GJ mol-1 ) in the near-IR spectral region ever recorded under drastic pumping conditions. Additionally, the modular synthetic strategy to access the cassettes allows the systematic study of their photonic behavior related to structural factors. Collectively, the outstanding behavior of these multichromophoric photonic materials provides the keystone for engineering multifunctional systems to expedite the next generation of effective red optical materials.

12.
Langmuir ; 35(14): 5021-5028, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30892895

RESUMO

Supramolecular self-assembly of a highly flexible and achiral meso bis(boron dipyrromethene) [bis(BODIPY)] dye straightforwardly yields fluorescent microfibers, exhibiting an intriguing anisotropic photonic behavior. This performance includes the generation of chiroptical activity owing to spontaneous mirror symmetry breaking (SMSB). Repetition of several self-assembly experiments demonstrates that the involved SMSB is not stochastic but quasi deterministic in the direction of the induced chiral asymmetry. The origin of these intriguing (chiro)photonic properties is revealed by fluorescent microspectroscopy studies of individual micrometric objects, combined with X-ray diffraction elucidation of microcrystals. Such a study demonstrates that J-like excitonic coupling between bis(BODIPY) units plays a fundamental role in their supramolecular organization, leading to axial chirality. Interestingly, the photonic behavior of the obtained fibers is ruled by inherent nonradiative pathways from the involved push-pull chromophores, and mainly by the complex excitonic interactions induced by their anisotropic supramolecular organization.

13.
Chemistry ; 24(15): 3802-3815, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314331

RESUMO

Stereochemical and steric control of the relative spatial arrangement of the chromophoric units in multichromophoric systems offers an interesting strategy for raising unusual and appealing light-induced emission states. To explore and exploit this strategy, a series of conformationally restricted boron-dipyrromethene (BODIPY) dimers were designed by using tartaric acid as a symmetrical connector between the boron atoms of the dyes. The variety of stereoisomeric forms available for this bis(hydroxy acid) allows the relative spatial orientation of the chromophoric units in the dimer to be modified, which thus opens the door to modulation of the photophysical and chiroptical properties of the new bichromophoric systems. Chromophore alkylation introduces an additional level of control through distance-dependent steric interactions between the BODIPY units in the dimer, which also modulates their relative spatial disposition and properties.

14.
Chemistry ; 23(69): 17511-17520, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-28853181

RESUMO

Herein we describe the synthesis, and computationally aided photophysical characterization of a new set of urea-bridged bis-BODIPY derivatives. These new dyads are efficiently obtained by a one-pot tandem Staudinger/aza-Wittig ureation protocol, from easily accessible meso-phenyl ortho-azidomethyl BODIPYs. These symmetric bis-BODIPYs outstand by a high absorption probability and excellent fluorescence and laser emission in less polar media. Nevertheless, this emission ability decreases in more polar media, which is ascribed to a light-induced charge-transfer from the urea spacer to the dipyrrin core, a process that can be modulated by appropriate changes in the substitution pattern of the BODIPY core. Furthermore, this ureation protocol can also be employed for the direct conjugation of our BODIPY-azides to amine-containing compounds, thus providing access to fluorescent non-symmetric ureas.

15.
Chemistry ; 23(39): 9383-9390, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28467651

RESUMO

N-BODIPYs (diaminoboron dipyrromethenes) are unveiled as a new family of BODIPY dyes with huge technological potential. Synthetic access to these systems has been gained through a judicious design focused on stabilizing the involved diaminoboron chelate. Once stabilized, the obtained N-BODIPYs retain the effective photophysical behavior exhibited by other boron-substituted BODIPYs, such as O-BODIPYs. However, key bonding features of nitrogen compared to those of oxygen (enhanced bond valence and different bond directionality) open up new possibilities for functionalizing BODIPYs, allowing an increase in the number of pendant moieties (from two in O-BODIPYs, up to four in N-BODIPYs) near the chromophore and, therefore, greater control of the photophysics. As a proof of concept, the following findings are discussed: (1) the low-cost and straightforward synthesis of a selected series of N-BODIPYs; (2) their outstanding photophysical properties compared to those of related effective dyes (excellent emission signatures, including fluorescence in the solid state; notable lasing capacities in the liquid phase and when doped into polymers; improved laser performance compared to the parent F-BODIPYs); (3) the versatility of the diaminoboron moiety in allowing the generation of multifunctionalized BODIPYs, permitting access to both symmetric and asymmetric dyes; (4) the capability of such versatility to finely modulate the dye photophysics towards different photonic applications, from lasing to chemosensing.

16.
J Org Chem ; 82(2): 1240-1247, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28026948

RESUMO

O-Ethylation of phthalides with Meerwein's reagent followed by reaction of the ensuing salts with pyrrole, results in the formation of 5-alkoxy-5-phenyl dipyrromethane derivatives, which function as ready precursors of ortho-substituted 8-aryl BODIPY derivatives by reaction with borontrifluoride etherate, an overall process that can be carried out in a one-pot operation.

17.
Phys Chem Chem Phys ; 19(33): 22088-22093, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28795713

RESUMO

The generation of circularly polarized laser emission (CPLE) in photonic devices has attracted increasing attention due to the prospects of using CP light in displaying technologies or advanced microscopies. Organic systems excel as laser materials across the whole visible spectrum, and despite many of them displaying circularly polarized luminescence (CPL), none have been shown thus far to amplify their own CPL, let alone generate CPLE. Consequently, there is still a need to find alternative CPLE organic devices. Herein we demonstrate an effective strategy for achieving strong levels of CPLE (|glum| ∼ 0.1-0.2) by using solutions of an achiral dye dissolved in optically active solvents to exploit the full potential of the dynamic birefringence induced by the intense and polarized laser pumping. The present approach enables changing the CPLE handedness by changing the handedness of the solvent optical activity, opening new avenues for developing cost-effective and easily processable chiro-photonic materials.

18.
Chemistry ; 22(3): 1048-61, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26608098

RESUMO

Herein, we report the synthesis of polyfunctional BODIPY building blocks suitable to be subjected to several reaction sequences with complete chemoselectivity, thereby allowing the preparation of complex BODIPY derivatives in a versatile and programmable manner. The reactions included the Liebeskind-Srogl cross-coupling reaction (LSCC), nucleophilic aromatic substitution (SN Ar), Suzuki, Sonogashira, and Stille couplings, and a desulfitative reduction of the MeS group. This novel synthetic protocol is a powerful route to design a library of compounds with tailored photophysical properties for advanced applications. In this context, it is noteworthy that it offers a straightforward and cost-effective strategy to shift the BODIPY emission deep into the near-infrared spectral region while retaining high fluorescence quantum yields as well as highly efficient and stable laser action. These new dyes outperform the lasing behaviour of dyes considered as benchmarks over the red spectral region, overcoming the important drawbacks associated with these commercial laser dyes, namely low absorption at the standard pump wavelengths (355 and 532 nm) and/or poor photostability.

19.
Opt Express ; 23(4): 4385-96, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836475

RESUMO

Herein, we report a straight forward stress probing method based on mechanically tunable organic VCSELs via dual detecting-modes. By designing the active layer thickness, uploaded stress was measured simultaneously by the laser wavelength and mode separations, facilitating highly sensitive stress detection in broad ranges. Single-mode laser emission with low threshold and narrow line-width was characterized, which could be tuned continuously within 8 nm. The probing sensitivity and resolution were estimated to be 60 Pa and 5.6 nm/KPa respectively, which were ~160-folds higher than previous results.

20.
Chemistry ; 21(4): 1755-64, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25470456

RESUMO

A straightforward synthetic protocol to directly incorporate stabilized 1,3-dicarbonyl C nucleophiles to the meso position of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3-dicarbonyl derivatives smoothly displace the 8-methylthio group from 8-(methylthio)BODIPY analogues in the presence of Cu(I) thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20-92%) in short reaction times (5-30 min). The excellent photophysical properties of the new dyes allow focusing on applications never analyzed before for BODIPYs substituted with stabilized C nucleophiles such as pH sensors and lasers in liquid and solid state, highlighting the relevance of the synthetic protocol described in the present work. The attainment of these dyes, with strong UV absorption and highly efficient and stable laser emission in the green spectral region, concerns to one of the greatest challenges in the ongoing development of advanced photonic materials with relevant applications. In fact, organic dyes with emission in the green are the only ones that allow, by frequency-doubling processes, the generation of tunable ultraviolet (250-350 nm) radiation, with ultra-short pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA