Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 114: 122-136, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28624516

RESUMO

Quaternary glacial cycles drove major shifts in both the extent and location of the geographical ranges of many organisms. During glacial maxima, large areas of central and northern Europe were inhospitable to temperate species, and these areas are generally assumed to have been recolonized during interglacials by range expansions from Mediterranean refugia. An alternative is that this recolonization was from non-Mediterranean refugia, in central Europe or western Asia, but data on the origin of widespread central and north European species remain fragmentary, especially for insects. We studied three widely distributed lineages of freshwater beetles (the Platambus maculatus complex, the Hydraena gracilis complex, and the genus Oreodytes), all restricted to running waters and including both narrowly distributed southern endemics and widespread European species, some with distributions spanning the Palearctic. Our main goal was to determine the role of the Pleistocene glaciations in shaping the diversification and current distribution of these lineages. We sequenced four mitochondrial and two nuclear genes in populations drawn from across the ranges of these taxa, and used Bayesian probabilities and Maximum Likelihood to reconstruct their phylogenetic relationships, age and geographical origin. Our results suggest that all extant species in these groups are of Pleistocene origin. In the H. gracilis complex, the widespread European H. gracilis has experienced a rapid, recent range expansion from northern Anatolia, to occupy almost the whole of Europe. However, in the other two groups widespread central and northern European taxa appear to originate from central Asia, rather than the Mediterranean. These widespread species of eastern origin typically have peripherally isolated forms in the southern Mediterranean peninsulas, which may be remnants of earlier expansion-diversification cycles or result from incipient isolation of populations during the most recent Holocene expansion. The accumulation of narrow endemics of such lineages in the Mediterranean may result from successive cycles of range expansion, with subsequent speciation (and local extinction in glaciated areas) through multiple Pleistocene climatic cycles.


Assuntos
Besouros/classificação , Animais , Ásia Ocidental , Sequência de Bases , Teorema de Bayes , Besouros/genética , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Europa (Continente) , Variação Genética , Histonas/classificação , Histonas/genética , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , Refúgio de Vida Selvagem
2.
PeerJ ; 4: e2514, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703857

RESUMO

In most lineages, most species have restricted geographic ranges, with only few reaching widespread distributions. How these widespread species reached their current ranges is an intriguing biogeographic and evolutionary question, especially in groups known to be poor dispersers. We reconstructed the biogeographic and temporal origin of the widespread species in a lineage with particularly poor dispersal capabilities, the diving beetle genus Deronectes (Dytiscidae). Most of the ca. 60 described species of Deronectes have narrow ranges in the Mediterranean area, with only four species with widespread European distributions. We sequenced four mitochondrial and two nuclear genes of 297 specimens of 109 different populations covering the entire distribution of the four lineages of Deronectes, including widespread species. Using Bayesian probabilities with an a priori evolutionary rate, we performed (1) a global phylogeny/phylogeography to estimate the relationships of the main lineages within each group and root them, and (2) demographic analyses of the best population coalescent model for each species group, including a reconstruction of the geographical history estimated from the distribution of the sampled localities. We also selected 56 specimens to test for the presence of Wolbachia, a maternally transmitted parasite that can alter the patterns of mtDNA variability. All species of the four studied groups originated in the southern Mediterranean peninsulas and were estimated to be of Pleistocene origin. In three of the four widespread species, the central and northern European populations were nested within those in the northern areas of the Anatolian, Balkan and Iberian peninsulas respectively, suggesting a range expansion at the edge of the southern refugia. In the Mediterranean peninsulas the widespread European species were replaced by vicariant taxa of recent origin. The fourth species (D. moestus) was proven to be a composite of unrecognised lineages with more restricted distributions around the Western and Central Mediterranean. The analysis of Wolbachia showed a high prevalence of infection among Deronectes, especially in the D. aubei group, where all sequenced populations were infected with the only exception of the Cantabrian Mountains, the westernmost area of distribution of the lineage. In this group there was a phylogenetic incongruence between the mitochondrial and the nuclear sequence, although no clear pattern links this discordance to the Wolbachia infection. Our results suggest that, in different glacial cycles, populations that happened to be at the edge of the newly deglaciated areas took advantage of the optimal ecological conditions to expand their ranges to central and northern Europe. Once this favourable ecological window ended populations become isolated, resulting in the presence of closely related but distinct species in the Mediterranean peninsulas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA