Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995166

RESUMO

The ancient arm of innate immunity known as the complement system is a blood proteolytic cascade involving dozens of membrane-bound and solution-phase components. Although many of these components serve as regulatory molecules to facilitate controlled activation of the cascade, C1 esterase inhibitor (C1-INH) is the sole canonical complement regulator belonging to a superfamily of covalent inhibitors known as serine protease inhibitors (SERPINs). In addition to its namesake role in complement regulation, C1-INH also regulates proteases of the coagulation, fibrinolysis, and contact pathways. Despite this, the structural basis for C1-INH recognition of its target proteases has remained elusive. In this study, we present the crystal structure of the Michaelis-Menten (M-M) complex of the catalytic domain of complement component C1s and the SERPIN domain of C1-INH at a limiting resolution of 3.94 Å. Analysis of the structure revealed that nearly half of the protein/protein interface is formed by residues outside of the C1-INH reactive center loop. The contribution of these residues to the affinity of the M-M complex was validated by site-directed mutagenesis using surface plasmon resonance. Parallel analysis confirmed that C1-INH-interfacing residues on C1s surface loops distal from the active site also drive affinity of the M-M complex. Detailed structural comparisons revealed differences in substrate recognition by C1s compared with C1-INH recognition and highlight the importance of exosite interactions across broader SERPIN/protease systems. Collectively, this study improves our understanding of how C1-INH regulates the classical pathway of complement, and it sheds new light on how SERPINs recognize their cognate protease targets.

2.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149922

RESUMO

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Assuntos
Complemento C1s , Via Clássica do Complemento , Animais , Ovinos , Peptídeo Hidrolases , Complemento C1/metabolismo , Endopeptidases , Piridinas/farmacologia
3.
J Biol Chem ; 300(5): 107236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552741

RESUMO

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Assuntos
Proteínas da Membrana Bacteriana Externa , Borrelia burgdorferi , Via Clássica do Complemento , Humanos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Via Clássica do Complemento/imunologia , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/imunologia , Doença de Lyme/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Ligação Proteica
4.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312359

RESUMO

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Complemento C1q , Evasão da Resposta Imune , Lipoproteínas , Doença de Lyme , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Complemento C1q/imunologia , Humanos , Imunoglobulinas/imunologia , Lipoproteínas/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Proteoma/imunologia
5.
J Biol Chem ; 299(8): 104972, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380082

RESUMO

Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.


Assuntos
Proteínas de Bactérias , Borrelia , Proteínas Inativadoras do Complemento 1 , Doença de Lyme , Febre Recorrente , Humanos , Proteínas de Bactérias/química , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Febre Recorrente/imunologia , Febre Recorrente/microbiologia , Proteínas Inativadoras do Complemento 1/química , Domínios Proteicos , Cristalografia por Raios X
6.
Am J Obstet Gynecol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763341

RESUMO

BACKGROUND: Gestational diabetes mellitus affects up to 10% of pregnancies and is classified into subtypes gestational diabetes subtype A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes subtype A2 (GDMA2) (requiring medication). However, whether these subtypes are distinct clinical entities or more reflective of an extended spectrum of normal pregnancy endocrine physiology remains unclear. OBJECTIVE: Integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the potential to reveal disease gene signatures in subsets of cells and tissue microenvironments. We aimed to combine these high-resolution technologies with rigorous classification of diabetes subtypes in pregnancy. We hypothesized that differences between preexisting type 2 and gestational diabetes subtypes would be associated with altered gene expression profiles in specific placental cell populations. STUDY DESIGN: In a large case-cohort design, we compared validated cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy controls by bulk RNA-seq (n=54). Quantitative analyses with reverse transcription and quantitative PCR of presumptive genes of significant interest were undertaken in an independent and nonoverlapping validation cohort of similarly well-characterized cases and controls (n=122). Additional integrated analyses of term placental single-cell, single-nuclei, and spatial transcriptomics data enabled us to determine the cellular subpopulations and niches that aligned with the GDMA1, GDMA2, and T2DM gene expression signatures at higher resolution and with greater confidence. RESULTS: Dimensional reduction of the bulk RNA-seq data revealed that the most common source of placental gene expression variation was the diabetic disease subtype. Relative to controls, we found 2052 unique and significantly differentially expressed genes (-22 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens, 267 among GDMA2, and 1520 among T2DM. Several candidate marker genes (chorionic somatomammotropin hormone 1 [CSH1], period circadian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB], superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5], suppressor of glucose, and autophagy associated 1 [SOGA1]) were validated in an independent and nonoverlapping validation cohort (q<0.05 Tukey). Functional enrichment revealed the pathways and genes most impacted for each diabetes subtype, and the degree of proximal similarity to other subclassifications. Surprisingly, GDMA1 and T2DM placental signatures were more alike by virtue of increased expression of chromatin remodeling and epigenetic regulation genes, while albumin was the top marker for GDMA2 with increased expression of placental genes in the wound healing pathway. Assessment of these gene signatures in single-cell, single-nuclei, and spatial transcriptomics data revealed high specificity and variability by placental cell and microarchitecture types. For example, at the cellular and spatial (eg, microarchitectural) levels, distinguishing features were observed in extravillous trophoblasts (GDMA1) and macrophages (GDMA2). Lastly, we utilized these data to train and evaluate 4 machine learning models to estimate our confidence in predicting the control or diabetes status of placental transcriptome specimens with no available clinical metadata. CONCLUSION: Consistent with the distinct association of perinatal outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected pregnancies harbor unique gene signatures that can be further distinguished by altered placental cellular subtypes and microarchitectural niches.

7.
Am J Obstet Gynecol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871238

RESUMO

BACKGROUND: In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes, type 2 diabetes, gestational diabetes and (most recently) pre-eclampsia. With its expanded use, however, concerns of unintended harm have been raised. OBJECTIVE: We developed an experimental primate model and applied triple-quadruple pole LC mass spectrometry (UHPLC-QQQ) for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN: Within 30 days of confirmed conception (defined as early pregnancy), n=13 time-bred (TMB) Rhesus dams with gestations designated for fetal necropsy were initiated on twice daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet (WSD). Metformin or placebo vehicle control were delivered in a variety of treats while animals were separated via a slide. A Cesarean was performed at G145, and amniotic fluid and blood were collected and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated UHPLC-QQQ in SRM against standard curves. RESULTS: Among the n=13 G145 pregnancies with fetal necropsy, n=1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 µM metformin/kg maternal weight or fetal/placental tissue), while a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight 248.32 g, <1%) and was suspected of having a fetal congenital condition. After excluding these two fetal gestations from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4, 3 female, 1 male fetuses) or 10 mg/kg metformin (n=7, 5 female, 2 male fetuses) were available for analyses. Among dams initiated on metformin by G30 (regardless of maternal diet), we observed significant bioaccumulation within the fetal kidney (0.78-6.06 µmol/kg, mean 2.48 µmol/kg) , liver (0.16-0.73 µmol/kg, mean 0.38 µmol/kg), fetal gut (0.28-1.22 µmol/kg, mean 0.70 µmol/kg), amniotic fluid (0.43-3.33 µmol/L, mean 1.88 µmol/L), placenta (0.16-1.0 µmol/kg , mean 0.50 µmol/kg) and fetal serum (0 -0.66 µmol/L , mean 0.23 µmol/L ), and fetal urine (4.1-174.1 µmol/L mean 38.5 µmol/L ), with fetal levels near biomolar equivalent to maternal levels (maternal serum 0.18-0.86 µmol/L , mean 0.46 µmol/L; maternal urine 42.6-254.0 µmol/L , mean 149.3 µmol/L). WSD feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta nor fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (p<0.05), collectively driving lower delivery weight (p<0.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness; this renal dysmorphology was not accompanied by structural nor functional changes indicative of renal insufficiency. CONCLUSIONS: We demonstrate fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology following maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.

8.
J Biol Chem ; 298(11): 102557, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183830

RESUMO

Proteolytic cascades comprise several important physiological systems, including a primary arm of innate immunity called the complement cascade. To safeguard against complement-mediated attack, the etiologic agent of Lyme disease, Borreliella burgdorferi, produces numerous outer surface-localized lipoproteins that contribute to successful complement evasion. Recently, we discovered a pair of B. burgdorferi surface lipoproteins of the OspEF-related protein family-termed ElpB and ElpQ-that inhibit antibody-mediated complement activation. In this study, we investigate the molecular mechanism of ElpB and ElpQ complement inhibition using an array of biochemical and biophysical approaches. In vitro assays of complement activation show that an independently folded homologous C-terminal domain of each Elp protein maintains full complement inhibitory activity and selectively inhibits the classical pathway. Using binding assays and complement component C1s enzyme assays, we show that binding of Elp proteins to activated C1s blocks complement component C4 cleavage by competing with C1s-C4 binding without occluding the active site. C1s-mediated C4 cleavage is dependent on activation-induced binding sites, termed exosites. To test whether these exosites are involved in Elp-C1s binding, we performed site-directed mutagenesis, which showed that ElpB and ElpQ binding require C1s residues in the anion-binding exosite located on the serine protease domain of C1s. Based on these results, we propose a model whereby ElpB and ElpQ exploit activation-induced conformational changes that are normally important for C1s-mediated C4 cleavage. Our study expands the known complement evasion mechanisms of microbial pathogens and reveals a novel molecular mechanism for selective C1s inhibition by Lyme disease spirochetes.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Complemento C1s/química , Complemento C1s/metabolismo , Borrelia burgdorferi/genética , Complemento C4/química , Proteínas do Sistema Complemento/metabolismo , Serina Proteases , Lipoproteínas/genética
9.
Biochem Biophys Res Commun ; 670: 47-54, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37276790

RESUMO

Lipoxygenases (LOXs) catalyze the oxidation of polyunsaturated fatty acids and synthesize oxylipin products that drive important cellular signaling processes in plants and animals. While there has been indirect evidence presented for the interaction of mammalian LOXs with membranes, a quantitative study of the molecular details of LOX-membrane interactions is lacking. Here, we mimicked biological membranes using surface plasmon resonance (SPR) sensor chips derivatized with 2-D planar lipophilic anchors (2D LP) to capture liposomes of varying phospholipid compositions that self-assemble into lipid bilayers on the SPR chip. The sensor chip surfaces were then used to investigate the membrane-binding properties of model LOX enzymes. SPR binding assays displayed reproducible and stable liposome capture to the sensor chip surface that allowed for the detailed characterization of LOX-membrane interactions. Our studies demonstrate a calcium-dependence for the membrane binding activities of coral 8R-LOX and human 15-LOX-2. Furthermore, our data confirm the importance of key membrane insertion loop residues in each of these LOX enzymes for membrane binding activity. Experiments utilizing model plant and human LOXs reveal differences in membrane-binding specificities. Our study establishes and validates a robust SPR-based platform using 2D LP sensor chips that allows for the detailed study of LOX-membrane interactions under different experimental conditions, including altered membrane compositions. Collectively, this investigation improves our overall understanding of LOX-membrane interaction properties, and our SPR-based approach holds potential for future use in the development of LOX-based therapeutics.


Assuntos
Lipoxigenases , Ressonância de Plasmônio de Superfície , Animais , Humanos , Bicamadas Lipídicas , Membrana Celular , Lipossomos , Mamíferos
10.
Cell Immunol ; 384: 104664, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642016

RESUMO

This study focused on soluble (s)CD25-mediated regulation of IL-2 signaling in murine and human CD4+ T cells. Recombinant sCD25 reversibly sequestered IL-2 to limit acute maximal proliferative responses while preserving IL-2 bioavailability to subsequently maintain low-zone IL-2 signaling during prolonged culture. By inhibiting IL-2 signaling during acute activation, sCD25 suppressed T-cell growth and inhibited IL-2-evoked transmembrane CD25 expression, thereby resulting in lower prevalence of CD25high T cells. By inhibiting IL-2 signaling during quiescent IL-2-mediated growth, sCD25 competed with transmembrane CD25, IL2Rßγ, and IL2Rαßγ receptors for limited pools of IL-2 such that sCD25 exhibited strong or weak inhibitory efficacy in IL-2-stimulated cultures of CD25low or CD25high T cells, respectively. Preferential blocking of IL-2 signaling in CD25low but not CD25high T cells caused competitive enrichment of CD25high memory/effector and regulatory FOXP3+ subsets. In conclusion, sCD25 modulates IL-2 bioavailability to limit CD25 expression during acute activation while enhancing CD25highT-cell dominance during low-zone homeostatic IL-2-mediated expansion, thereby 'flattening' the inflammatory curve over time.


Assuntos
Interleucina-2 , Linfócitos T Reguladores , Humanos , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Interleucina-2/metabolismo , Células T de Memória , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Fatores de Transcrição Forkhead/metabolismo
11.
J Immunol ; 207(11): 2856-2867, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34759015

RESUMO

Complement evasion is a hallmark of extracellular microbial pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. Lyme disease spirochetes express nearly a dozen outer surface lipoproteins that bind complement components and interfere with their native activities. Among these, BBK32 is unique in its selective inhibition of the classical pathway. BBK32 blocks activation of this pathway by selectively binding and inhibiting the C1r serine protease of the first component of complement, C1. To understand the structural basis for BBK32-mediated C1r inhibition, we performed crystallography and size-exclusion chromatography-coupled small angle X-ray scattering experiments, which revealed a molecular model of BBK32-C in complex with activated human C1r. Structure-guided site-directed mutagenesis was combined with surface plasmon resonance binding experiments and assays of complement function to validate the predicted molecular interface. Analysis of the structures shows that BBK32 inhibits activated forms of C1r by occluding substrate interaction subsites (i.e., S1 and S1') and reveals a surprising role for C1r B loop-interacting residues for full inhibitory activity of BBK32. The studies reported in this article provide for the first time (to our knowledge) a structural basis for classical pathway-specific inhibition by a human pathogen.


Assuntos
Proteínas de Bactérias/imunologia , Borrelia burgdorferi/química , Complemento C1r/imunologia , Doença de Lyme/imunologia , Peptídeo Hidrolases/imunologia , Proteínas de Bactérias/química , Borrelia burgdorferi/imunologia , Humanos , Modelos Moleculares
12.
Cell Immunol ; 381: 104603, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182705

RESUMO

Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.

13.
Memory ; : 1-15, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193451

RESUMO

ABSTRACTSocial media has become one of the most powerful and ubiquitous means by which individuals curate and share their life stories with the world at large. Not surprisingly then, researchers have started to examine the reasons why individuals post personal memories on social media and said individuals' characteristics. Across two studies, we extended this line of research by further testing the Purposes of Online Memory Sharing Scale (POMSS) and its subscales: self, social, therapeutic and directive. Additionally, we examined which of these motives led college students (Study 1) and adults of a community sample (Study 2) to post personal memories on social media and whether said motives were associated with the individuals' psychological characteristics. Overall, the results revealed that emerging adults and older adults posted personal experiences on social media primarily for social reasons. We also found that extraversion, disclosure and social media usage predicted each of the motives for posting personal experiences on social media. In addition, individuals who were more lonely and who had lower self-esteem were more likely to post personal experiences on social media for therapeutic reasons. We discuss these results in terms of their implications towards understanding the mnemonic consequences associated with social media use.

14.
Curr Issues Mol Biol ; 42: 473-518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33353871

RESUMO

Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.


Assuntos
Borrelia , Suscetibilidade a Doenças , Doença de Lyme/microbiologia , Animais , Vetores Artrópodes/microbiologia , Borrelia/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/transmissão , Carrapatos/microbiologia , Virulência , Fatores de Virulência/genética
15.
PLoS Pathog ; 15(3): e1007659, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30897158

RESUMO

The carboxy-terminal domain of the BBK32 protein from Borrelia burgdorferi sensu stricto, termed BBK32-C, binds and inhibits the initiating serine protease of the human classical complement pathway, C1r. In this study we investigated the function of BBK32 orthologues of the Lyme-associated Borrelia burgdorferi sensu lato complex, designated BAD16 from B. afzelii strain PGau and BGD19 from B. garinii strain IP90. Our data show that B. afzelii BAD16-C exhibits BBK32-C-like activities in all assays tested, including high-affinity binding to purified C1r protease and C1 complex, and potent inhibition of the classical complement pathway. Recombinant B. garinii BGD19-C also bound C1 and C1r with high-affinity yet exhibited significantly reduced in vitro complement inhibitory activities relative to BBK32-C or BAD16-C. Interestingly, natively produced BGD19 weakly recognized C1r relative to BBK32 and BAD16 and, unlike these proteins, BGD19 did not confer significant protection from serum killing. Site-directed mutagenesis was performed to convert BBK32-C to resemble BGD19-C at three residue positions that are identical between BBK32 and BAD16 but different in BGD19. The resulting chimeric protein was designated BXK32-C and this BBK32-C variant mimicked the properties observed for BGD19-C. To query the disparate complement inhibitory activities of BBK32 orthologues, the crystal structure of BBK32-C was solved to 1.7Å limiting resolution. BBK32-C adopts an anti-parallel four-helix bundle fold with a fifth alpha-helix protruding from the helical core. The structure revealed that the three residues targeted in the BXK32-C chimera are surface-exposed, further supporting their potential relevance in C1r binding and inhibition. Additional binding assays showed that BBK32-C only recognized C1r fragments containing the serine protease domain. The structure-function studies reported here improve our understanding of how BBK32 recognizes and inhibits C1r and provide new insight into complement evasion mechanisms of Lyme-associated spirochetes of the B. burgdorferi sensu lato complex.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Via Clássica do Complemento/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/ultraestrutura , Borrelia burgdorferi/imunologia , Grupo Borrelia Burgdorferi , Complemento C1r/metabolismo , Via Clássica do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Doença de Lyme/fisiopatologia , Domínios Proteicos/fisiologia , Proteínas Recombinantes , Análise de Sequência de Proteína
16.
PLoS Pathog ; 15(6): e1007816, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216354

RESUMO

Fibrinogen is an essential part of the blood coagulation cascade and a major component of the extracellular matrix in mammals. The interface between fibrinogen and bacterial pathogens is an important determinant of the outcome of infection. Here, we demonstrate that a canine host-restricted skin pathogen, Staphylococcus pseudintermedius, produces a cell wall-associated protein (SpsL) that has evolved the capacity for high strength binding to canine fibrinogen, with reduced binding to fibrinogen of other mammalian species including humans. Binding occurs via the surface-expressed N2N3 subdomains, of the SpsL A-domain, to multiple sites in the fibrinogen α-chain C-domain by a mechanism analogous to the classical dock, lock, and latch binding model. Host-specific binding is dependent on a tandem repeat region of the fibrinogen α-chain, a region highly divergent between mammals. Of note, we discovered that the tandem repeat region is also polymorphic in different canine breeds suggesting a potential influence on canine host susceptibility to S. pseudintermedius infection. Importantly, the strong host-specific fibrinogen-binding interaction of SpsL to canine fibrinogen is essential for bacterial aggregation and biofilm formation, and promotes resistance to neutrophil phagocytosis, suggesting a key role for the interaction during pathogenesis. Taken together, we have dissected a bacterial surface protein-ligand interaction resulting from the co-evolution of host and pathogen that promotes host-specific innate immune evasion and may contribute to its host-restricted ecology.


Assuntos
Proteínas de Bactérias/imunologia , Biofilmes/crescimento & desenvolvimento , Fibrinogênio/imunologia , Evasão da Resposta Imune , Imunidade Inata , Staphylococcus/fisiologia , Animais , Proteínas de Bactérias/genética , Galinhas , Cães , Fibrinogênio/genética , Humanos
17.
Proc Natl Acad Sci U S A ; 114(35): 9439-9444, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808028

RESUMO

Staphylococcus aureus is highly adapted to its host and has evolved many strategies to resist opsonization and phagocytosis. Even after uptake by neutrophils, S. aureus shows resistance to killing, which suggests the presence of phagosomal immune evasion molecules. With the aid of secretome phage display, we identified a highly conserved protein that specifically binds and inhibits human myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. We have named this protein "staphylococcal peroxidase inhibitor" (SPIN). To gain insight into inhibition of MPO by SPIN, we solved the cocrystal structure of SPIN bound to a recombinant form of human MPO at 2.4-Å resolution. This structure reveals that SPIN acts as a molecular plug that prevents H2O2 substrate access to the MPO active site. In subsequent experiments, we observed that SPIN expression increases inside the neutrophil phagosome, where MPO is located, compared with outside the neutrophil. Moreover, bacteria with a deleted gene encoding SPIN showed decreased survival compared with WT bacteria after phagocytosis by neutrophils. Taken together, our results demonstrate that S. aureus secretes a unique proteinaceous MPO inhibitor to enhance survival by interfering with MPO-mediated killing.


Assuntos
Peroxidase/antagonistas & inibidores , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Humanos , Modelos Moleculares , Neutrófilos/fisiologia , Fagocitose , Ligação Proteica , Conformação Proteica , Staphylococcus aureus/metabolismo , Regulação para Cima
18.
Molecules ; 25(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899120

RESUMO

The initiating protease of the complement classical pathway, C1r, represents an upstream and pathway-specific intervention point for complement-related autoimmune and inflammatory diseases. Yet, C1r-targeted therapeutic development is currently underrepresented relative to other complement targets. In this study, we developed a fragment-based drug discovery approach using surface plasmon resonance (SPR) and molecular modeling to identify and characterize novel C1r-binding small-molecule fragments. SPR was used to screen a 2000-compound fragment library for binding to human C1r. This led to the identification of 24 compounds that bound C1r with equilibrium dissociation constants ranging between 160-1700 µM. Two fragments, termed CMP-1611 and CMP-1696, directly inhibited classical pathway-specific complement activation in a dose-dependent manner. CMP-1611 was selective for classical pathway inhibition, while CMP-1696 also blocked the lectin pathway but not the alternative pathway. Direct binding experiments mapped the CMP-1696 binding site to the serine protease domain of C1r and molecular docking and molecular dynamics studies, combined with C1r autoactivation assays, suggest that CMP-1696 binds within the C1r active site. The group of structurally distinct fragments identified here, along with the structure-activity relationship profiling of two lead fragments, form the basis for future development of novel high-affinity C1r-binding, classical pathway-specific, small-molecule complement inhibitors.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Descoberta de Drogas , Peptídeo Hidrolases/metabolismo , Ativação do Complemento , Desenho de Fármacos , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
19.
J Biol Chem ; 293(7): 2260-2271, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29306874

RESUMO

The heme-containing enzyme myeloperoxidase (MPO) is critical for optimal antimicrobial activity of human neutrophils. We recently discovered that the bacterium Staphylococcus aureus expresses a novel immune evasion protein, called SPIN, that binds tightly to MPO, inhibits MPO activity, and contributes to bacterial survival following phagocytosis. A co-crystal structure of SPIN bound to MPO suggested that SPIN blocks substrate access to the catalytic heme by inserting an N-terminal ß-hairpin into the MPO active-site channel. Here, we describe a series of experiments that more completely define the structure/function relationships of SPIN. Whereas the SPIN N terminus adopts a ß-hairpin confirmation upon binding to MPO, the solution NMR studies presented here are consistent with this region of SPIN being dynamically structured in the unbound state. Curiously, whereas the N-terminal ß-hairpin of SPIN accounts for ∼55% of the buried surface area in the SPIN-MPO complex, its deletion did not significantly change the affinity of SPIN for MPO but did eliminate the ability of SPIN to inhibit MPO. The flexible nature of the SPIN N terminus rendered it susceptible to proteolytic degradation by a series of chymotrypsin-like proteases found within neutrophil granules, thereby abrogating SPIN activity. Degradation of SPIN was prevented by the S. aureus immune evasion protein Eap, which acts as a selective inhibitor of neutrophil serine proteases. Together, these studies provide insight into MPO inhibition by SPIN and suggest possible functional synergy between two distinct classes of S. aureus immune evasion proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Peroxidase/química , Peroxidase/metabolismo , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Peroxidase/genética , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética
20.
J Biol Chem ; 293(12): 4468-4477, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29414776

RESUMO

Staphylococcus aureus is a versatile pathogen capable of causing a broad range of diseases in many different hosts. S. aureus can adapt to its host through modification of its genome (e.g. by acquisition and exchange of mobile genetic elements that encode host-specific virulence factors). Recently, the prophage φSaeq1 was discovered in S. aureus strains from six different clonal lineages almost exclusively isolated from equids. Within this phage, we discovered a novel variant of staphylococcal complement inhibitor (SCIN), a secreted protein that interferes with activation of the human complement system, an important line of host defense. We here show that this equine variant of SCIN, eqSCIN, is a potent blocker of equine complement system activation and subsequent phagocytosis of bacteria by phagocytes. Mechanistic studies indicate that eqSCIN blocks equine complement activation by specific inhibition of the C3 convertase enzyme (C3bBb). Whereas SCIN-A from human S. aureus isolates exclusively inhibits human complement, eqSCIN represents the first animal-adapted SCIN variant that functions in a broader range of hosts (horses, humans, and pigs). Binding analyses suggest that the human-specific activity of SCIN-A is related to amino acid differences on both sides of the SCIN-C3b interface. These data suggest that modification of this phage-encoded complement inhibitor plays a role in the host adaptation of S. aureus and are important to understand how this pathogen transfers between different hosts.


Assuntos
Convertases de Complemento C3-C5/metabolismo , Complemento C3b/antagonistas & inibidores , Proteínas Inativadoras do Complemento/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Animais , Complemento C3b/metabolismo , Proteínas Inativadoras do Complemento/química , Hemólise , Cavalos , Especificidade de Hospedeiro , Humanos , Fagocitose , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/isolamento & purificação , Suínos , Fatores de Virulência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA