Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 693, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075460

RESUMO

BACKGROUND: The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS: We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS: 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION: TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.


Assuntos
Pesquisa Biomédica , Humanos
2.
Dev Biol ; 392(2): 153-67, 2014 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-24951879

RESUMO

The post-synaptic translation of localised mRNAs has been postulated to underlie several forms of plasticity at vertebrate synapses, but the mechanisms that target mRNAs to these postsynaptic sites are not well understood. Here we show that the evolutionary conserved dsRNA binding protein, Staufen, localises to the postsynaptic side of the Drosophila neuromuscular junction (NMJ), where it is required for the localisation of coracle mRNA and protein. Staufen plays a well-characterised role in the localisation of oskar mRNA to the oocyte posterior, where Staufen dsRNA-binding domain 5 is specifically required for its translation. Removal of Staufen dsRNA-binding domain 5, disrupts the postsynaptic accumulation of Coracle protein without affecting the localisation of cora mRNA, suggesting that Staufen similarly regulates Coracle translation. Tropomyosin II, which functions with Staufen in oskar mRNA localisation, is also required for coracle mRNA localisation, suggesting that similar mechanisms target mRNAs to the NMJ and the oocyte posterior. Coracle, the orthologue of vertebrate band 4.1, functions in the anchoring of the glutamate receptor IIA subunit (GluRIIA) at the synapse. Consistent with this, staufen mutant larvae show reduced accumulation of GluRIIA at synapses. The NMJs of staufen mutant larvae have also a reduced number of synaptic boutons. Altogether, this suggests that this novel Staufen-dependent mRNA localisation and local translation pathway may play a role in the developmentally regulated growth of the NMJ.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Membrana/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Glutamato/metabolismo , Animais , Western Blotting , Drosophila/metabolismo , Proteínas de Drosophila/genética , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Membrana/genética , Microscopia Imunoeletrônica , Junção Neuromuscular/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-20407637

RESUMO

Nova proteins are neuron-specific RNA binding proteins targeted by autoantibodies in a disorder manifest by failure of motor inhibition, and they regulate splicing and alternative 3' processing. Nova regulates splicing of RNAs encoding synaptic proteins, including the inhibitory glycine receptor alpha2 subunit (GlyRalpha2), and binds to others, including the GIRK2 channel. We found that Nova harbors functional NES and NLS elements, shuttles between the nucleus and cytoplasm, and that 50% of the protein localizes to the soma-dendritic compartment. Immunofluoresence and EM analysis of spinal cord motor neurons demonstrated that Nova co-localizes beneath synaptic contacts in dendrites with the same RNA, GlyRalpha2, whose splicing it regulates in the nucleus. HITS-CLIP identified intronic and 3' UTR sites where Nova binds to GlyRalpha2 and GIRK2 transcripts in the brain. This led directly to the identification of a 3' UTR localization element that mediates Nova-dependent localization of GIRK2 in primary neurons. These data demonstrate that HITS-CLIP can identify functional RNA localization elements, and they suggest new links between the regulation of nuclear RNA processing and mRNA localization.

5.
Cell ; 125(7): 1375-86, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16814722

RESUMO

Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.


Assuntos
Centríolos/fisiologia , Drosophila/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Encéfalo/ultraestrutura , Centríolos/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Genes de Insetos , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Masculino , Mitose/genética , Mutação , Neurônios Aferentes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA